首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
[2003年] 讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
admin
2019-06-09
70
问题
[2003年] 讨论曲线y=4lnx+k与y=4x+ln
4
x的交点个数.
选项
答案
构造辅助函数F(x)=ln
4
x+4x一4lnx一k.对F(x)使用命题1.2.5.8即可求出其交点个数. 本题可归结为讨论方程ln
4
x+4x一4lnx—k=0有几个不同的实根.设F(x)=ln
4
x一4lnx+4x—k,显然F(x)的定义域为(0,+∞).注意到 [*](ln
4
x一4lnx+4x—k)=+∞, [*](ln
4
x一4lnx+4x一k)=+∞, 即F(x)在其定义区间端点处的极限值同号.为求其零点个数,可先求其在(0,+∞)内的最值. 由F′(x)=4(ln
3
x一1+x)/x=0得到唯一驻点x=1. 当0<x<1时,F′(x)<0;当x>1时,F′(x)>0.故x=1为F(x)的极小值点,由驻点唯一即知,x=1为F(x)的最小值点,其最小值为m=F(1)=4一k.于是由命题1.2.5.8得到下述结论: (1)当x=4一k>0即k<4时,F(x)与x轴没有交点,因而F(x)=0无实根,即两曲线无交点; (2)当x=4一k=0即k=4时,F(x)与x轴只有一个交点,因而F(x)=0只有一个实根,即两曲线只有一交点; (3)当m=4一k<0即足>4时,F(x)与x轴有两个交点,因而F(x)=0有两个实根,分别位于区间(0,1)与(1,+∞)内,即两曲线有两个交点.
解析
转载请注明原文地址:https://kaotiyun.com/show/5eV4777K
0
考研数学二
相关试题推荐
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ(u)≠1.求
设矩阵A=为A*对应的特征向量.判断A可否对角化.
设矩阵A=为A*对应的特征向量.求a,b及α对应的A*的特征值;
试确定方程x=aex(a>0)实根的个数。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在ξ∈(0,1),使得f(ξ)=1一ξ;
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求(I)D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)a的值,使V(a)为最大。
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式。
设f(x)在[a,b]上有连续的导数,证明+∫ab|f’(x)|dx。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
随机试题
HowdoyouexplaineconomicsinplainEnglish?TheFederalReserveBankofNewYorkhasbeenansweringthequestionwithaneven
中国共产党在社会主义事业中起到的作用是
下列哪项不是中风中经络的主症()
以下属于危险、有害因素辨识与分析工作内容的是()。
下列关于破产费用与共益债务清偿的表述中,符合企业破产法规定的有()。
下列不属于幼儿园教育任务的是()。
但在众多借此批评中国U16国家队及中国足球的声音当中,还是下意识地隐藏着一种不恰当的“大国沙文主义足球观”,还是有些高看了中国足球几眼的意思在里头。
美国媒体分析,特朗普安排了大量的高级助手,这些助手很可能将会凌驾于内阁部长之上。而这个由高级助手们组成的影子内阁将在各联邦机关内贯彻白宫的意志。
以下关于《天朝田亩制度》和《资政新篇》的说法,正确的是()
筷子的使用要追溯到古时候,那时候大部分中国人还是农民。那些农夫不想用脏手拿取食物,也不想被烫着,所以就开始用小树枝(twig)来夹取食物。因为中国人从小就使用筷子,所以他们觉得筷子效率很高,用起来很简单。筷子有木制的、竹制的和塑料制的,通常用右手使用。筷子
最新回复
(
0
)