首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
admin
2016-10-20
27
问题
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
选项
答案
(1)由r(B)=n,知B的列向量中有n个是线性无关的,设为β
1
,β
2
,…,β
n
.令B
1
=(β
1
,β
2
,…,β
n
),它是n阶矩阵,其秩是n,因此B
1
可逆.由AB=0,知AB
1
=0,那么右乘B
1
-1
,得A=(AB
1
)B
1
-1
=OB
1
-1
=0. (2)由AB=0知B=(β
1
,β
2
,…,β
P
)的每一列都是齐次方程组Ax=0的解,因为r(B)=n,故Ax=0至少有n个线性无关的解,但Ax=0最多有n-r(a)个线性无关的解,于是n≤n-r(A) [*]r(A)≤0,按秩的定义又有r(A)≥0,所以r(A)=0,即A=0. (3)对矩阵B按行分块,有 [*] 那么 a
11
α
1
+a
12
α
2
+…+a
1n
α
n
=0. 因为r(B)=r(α
1
,α
2
,…,α
n
)=n,知α
1
,α
2
,…,α
n
线性无关,于是组合系数 a
11
=a
12
=…=a
1n
≡0. 同理,得a
ij
≡0,即A=0. (4)由AB=0 知r(A)+r(B)≤n.又r(B)=n,故r(A)≤0.显然r(A)≥0.所以必有r(A)=O,即有A=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YeT4777K
0
考研数学三
相关试题推荐
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
用文氏图和几何概率解释两个事件A与B相互独立的含义.
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设P(A)=0或1,证明A与其他任何事件B相互独立.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
利用极坐标将积分,化成一元函数积分式,其中f连续.
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
随机试题
有关原发性醛固酮增多症术前护理错误的是
小儿重症肺炎最常见的酸碱平衡紊乱是
某分项工程实物工程量为1500m2,该分项工程人工产量定额为5m2/工日,计划每天安排2班,每班10人完成该分项工程,则其持续时间为( )天。
高位水箱用于贮水和稳定水压,水箱通常用( )等材料制作。
双代号网络计划时间参数不包括()。
2012年12月,在世界温泉及气候养生联合会第65届国际科学大会上,被命名为全球首个“世界温泉之都”的中国城市是()。
“戴高帽子”是一句俗语,出自唐代李延寿《北史熊安生传》,是指凡是受人恭维或恭维别人,都称之为“戴高帽子”。你若作为管理者,请就给下属常“戴高帽子”好不好谈谈看法。
写作“报告”应注意的问题是()。
商业银行资金缺口管理的主要内容是什么?[武汉大学2001研]
Thedish______terrible!Idon’tlikeitatall.
最新回复
(
0
)