首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4,线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4,线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2014-01-26
55
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
,线性无关,α
1
=2α
2
-α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
[详解1] 令[*],则由Ax=(α
1
,α
2
,α
3
,α
4
)[*],得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
, 将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
—3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 由α
2
,α
3
,α
4
线性无关,知 [*] 解此方程组得 [*],其中走为任意常数. [详解2] 由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
+0α
4
,知A的秩为3,因此Ax=0的基础解系中只包含一个向量. 由 α
1
-2α
2
+α
3
+0α
4
=0, 知[*]为齐次线性方程组Ax=0的一个解,所以其通解为 [*],k为任意常数. 再由β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*], 知[*]为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*],其中k为任意常数.
解析
[分析] 本题不知方程组Ax=β的具体形式,可通过已知将A,β代入后,再根据α
2
,α
3
,α
4
线性无关,确定未知量x应满足的等式,即方程组,再求解之;或直接根据通解结构,先找出对应齐次线性方程组的通解(基础解系)以及Ax=β的一个特解即可,而α
1
=2α
2
-α
3
相当于告诉了Ax=0的一个非零解,β=α
1
+α
2
+α
3
+α
4
相当于告诉了Ax=β的一个特解.
[评注] 从本题可以看出,一组向量组之间的线性组合,相当于已知对应齐次线性方程组的一个解;而一个向量用一组向量线性表示则相当于已知对应非齐次线性方程组的一个特解.向量与线性方程组之间的这种对应关系是值得注意的.
转载请注明原文地址:https://kaotiyun.com/show/Ym34777K
0
考研数学二
相关试题推荐
[2018年]下列函数中,在x=0处不可导的是()
[2008年]设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记求E(T)(原题为证明T是μ2的无偏估计量);
设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
(91年)某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
设线性方程组(1)与方程x1+2x2+x3=a一1(2)有公共解,求a的值及所有公共解。
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)