首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4,线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4,线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2014-01-26
71
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
,线性无关,α
1
=2α
2
-α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
[详解1] 令[*],则由Ax=(α
1
,α
2
,α
3
,α
4
)[*],得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
, 将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
—3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0. 由α
2
,α
3
,α
4
线性无关,知 [*] 解此方程组得 [*],其中走为任意常数. [详解2] 由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
-α
3
+0α
4
,知A的秩为3,因此Ax=0的基础解系中只包含一个向量. 由 α
1
-2α
2
+α
3
+0α
4
=0, 知[*]为齐次线性方程组Ax=0的一个解,所以其通解为 [*],k为任意常数. 再由β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*], 知[*]为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*],其中k为任意常数.
解析
[分析] 本题不知方程组Ax=β的具体形式,可通过已知将A,β代入后,再根据α
2
,α
3
,α
4
线性无关,确定未知量x应满足的等式,即方程组,再求解之;或直接根据通解结构,先找出对应齐次线性方程组的通解(基础解系)以及Ax=β的一个特解即可,而α
1
=2α
2
-α
3
相当于告诉了Ax=0的一个非零解,β=α
1
+α
2
+α
3
+α
4
相当于告诉了Ax=β的一个特解.
[评注] 从本题可以看出,一组向量组之间的线性组合,相当于已知对应齐次线性方程组的一个解;而一个向量用一组向量线性表示则相当于已知对应非齐次线性方程组的一个特解.向量与线性方程组之间的这种对应关系是值得注意的.
转载请注明原文地址:https://kaotiyun.com/show/Ym34777K
0
考研数学二
相关试题推荐
(15年)设{χn}是数列.下列命题中不正确的是【】
设α为n维单位向量,E为n阶单位矩阵,则()
(07年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(97年)设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,-1,1)T,α2=1,-2,-1)T.(1)求A的属于特征值3的特征向量;(2)求矩阵A.
(96年)设矩阵A=(1)已知A的一个特征值为3,试求y;(2)求可逆矩阵P,使(AP)T(AP)为对角矩阵.
(87年)假设D是矩阵A的r,阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=________。
随机试题
(),是指合同当事人双方依据合同条款的规定,实现各自享有的权利,并承担各自负有的义务。
关于焊接操作要求的说法,正确的有()。
下列不属于境外主要股票价格指数的是()。
在了解被审计单位内部控制时,注册会计师通常采用的程序有()。
在Word中,下列操作不能实现的是()。
中国画常用的墨法有:________、________、________等。
对刑期起算点,下列表述符合我国刑法规定的是()。
《国际歌》的词作者是()。
longer
【B1】【B2】
最新回复
(
0
)