首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2015-07-22
54
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
0,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n-r+1
=β
n-r+2
一β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZIw4777K
0
考研数学一
相关试题推荐
求∫sin4x/(1+cosx)dx.
[*]
∫(1-1/x2)ex+1/x+2dx=________.
设f(x)在[1,2]上连续,在(1,2)内二阶连续可导,且f"(x)>0,f(0)=0,证明:2f(1)<f(2).
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
讨论级数的敛散性.
随机试题
加碱化剂的目的是消除氢离子的干扰。
未经有关部门批准,医师擅自开办诊所,卫生行政部门可采取的措施不包括
A.AAI起搏器B.VVI起搏器C.VAT起搏器D.DDD起搏器E.VOO起搏器测得窦房结恢复时间为2400ms,房室结文氏点为160次/分,可选用
A.当量剂量B.有效剂量C.比释动能D.吸收剂量E.吸收剂量率当身体各部分受到不同程度照射时,对人体造成的总的随机性辐射损伤是
关于总会计师,下列说法正确的有()。
按照(),金融机构可分为金融调控机构和金融运行机构。
外国旅游者在来华途中行李确系丢失,应由()向有关航空公司索赔。
从警察起源上看,()。
下列语句中,正确的是()。
Careforchildrenandolderpeoplehasrecentlyhittheheadlines.Governmentannouncementsonfundingreformshaveputcarefir
最新回复
(
0
)