首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2015-07-22
61
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
0,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n-r+1
=β
n-r+2
一β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZIw4777K
0
考研数学一
相关试题推荐
ln2
平面曲线绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
z=xy+y2,则
∫(1+lnx)dx/(1+x2ln2x)=________.
曲线ex+y-sin(xy)=e在点(0,1)处的切线为________.
证明:方程在(0,+∞)内有且仅有两个根.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
设二次型若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y21+y22.
判定级数的敛散性:
下列级数中发散的是().
随机试题
阅读《麦琪的礼物》中的一段文字,然后回答下列问题。我的拙笔在这里告诉了诸位一个没有曲折、不足为奇的故事:那两个住在一间公寓里的笨孩子,极不聪明地为了对方牺牲了他们一家最宝贵的东西。但是,让我们对目前一般聪明人说最后一句话,在所有馈赠礼物的人当中,那两个人
六腑的共同生理特点是
A.寒凉药B.开窍药C.发汗药D.苦寒清热药E.淡渗利湿药阴虚津亏者忌用()。
在混凝土工程中,掺入粉煤灰,硅粉可减少水泥用量,降低水化热,()混凝土裂缝的产生。
下列房地产统计指标中,属于时点指标的有()。
开户银行对本行签发的超过大额现金标准、注明“现金”字样的银行汇票、银行本票,视同大额现金支付,实行登记备案制度。()
甲食品有限公司(以下简称“甲公司”,增值税一般纳税人)。2016年2月发生下列经营业务:(1)从某农业生产者处收购花生,开具的收购凭证上注明收购价格为50000元,货物验收入库;支付某运输企业(一般纳税人)运费并取得增值税专用发票,注明运费254.56元
100个骨牌整齐地排成一列,依次编号为1、2、3、4…99、100。如果第一次拿走所有偶数位置上的牌,第二次再从剩余牌中拿走所有偶数位置上的牌,第三次再从剩余牌中拿走所有奇数位置上的牌,第四次再从剩余牌中拿走所有奇数位置上的牌,第五次再从剩余牌中拿走所有偶
求
Itisnecessaryforthevaluablespeciesto______itselfinordertostayinexistence.
最新回复
(
0
)