首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2015-07-22
38
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
0,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n-r+1
=β
n-r+2
一β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZIw4777K
0
考研数学一
相关试题推荐
设z=z(x,y)由方程
设z=z(x,y)由x3y2z=x2+y2+cosz确定,则
证明:当x>0时,arctanx+1/x>π/2.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
讨论函数的连续性.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求齐次线性方程组的基础解系.
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
随机试题
向宽为a米的河修建一宽为b米的运河,两者直角相交,问能驶进运河的船,其最大长度为多少?
莲子苦杏仁
题1-120图示电路中,iL(0-)=0,当t=0,当闭合开关S后,iL应为()。(式中τ=10-6s)
中央分隔带施工中埋设横向塑料排水管的进口用土工布包裹的作用是()。
政府引导公众参与背景资料:听说花一块钱就能买一个节能灯,2008年6月15日,北京市东城区和平里街道化工大院社区的居民早早就排起了长队,购买政府补贴推广的节能灯。在我国一些地区,节能灯通常遭到冷遇,全民节能意识淡薄是一个原因,但更重要的
现代市场体系的内容有()。
请概括材料中所反映的污染的主要表现和突出问题是什么?要求:概括全面,条理清楚,语言流畅,不超过300字。(30分)请以“清新的空气蓝蓝的天”为题,写一篇文章。要求:(1)参考给定材料,自选角度。(2)观点明确、内容充实、结构完整、语言生动。(3)总字数
人员配置计划包括()。
下列关于成人中期的人格发展特点的表述,错误的是()
ThomasLeech______averysuccessfulcareerasaphotographer.
最新回复
(
0
)