首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。 求θ的最大似然估计量。
设总体X的概率密度为 其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。 求θ的最大似然估计量。
admin
2019-01-19
97
问题
设总体X的概率密度为
其中θ为未知参数且大于零,X
1
,X
2
,…,X
n
为来自总体X的简单随机样本。
求θ的最大似然估计量。
选项
答案
对于总体X的样本值x
1
,x
2
,…,x
n
,其似然函数为 L(x
1
,x
2
,…,x
n
;θ)=f(x
1
;θ)f(x
2
;θ),…,f(x
n
;θ)=θ
2n
(x
1
,x
2
,…,x
n
)
-3
[*] lnL=2nlnθ一3ln(x
1
,x
2
,…,x
n
)一θ[*] [*]=0, 得到最大似然估计量为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/a1P4777K
0
考研数学三
相关试题推荐
设总体X的分布律为其中0<θ<l,X1,X2,…,Xn为来自总体的简单随机样本.(1)求θ的最大似然估计量;(2)判断的无偏性和一致性.
设问a,b为何值时,β可由α1,α2,α3线性表示,且表示法唯一,写出线性表示式.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
已知a0=3,a1=5,对任意的n>1,有nan=an—1—(n一1)an—1.证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
证明级数收敛,且其和数小于1.
设函数f(x)在(0,+∞)内连续,f(1)=,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
求解微分方程(y—x2)y’=x.
设非齐次方程组(I)有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
随机试题
决策民主化的特征有()
平等原则是指()。
A、遗传性球形红细胞增多症B、地中海贫血C、遗传性椭圆形红细胞增多症D、免疫性血小板减少性紫癜E、自体免疫性溶血性贫血以皮肤黏膜及内脏出血为主要表现的疾病是()
工程量清单计价中,分部分项工程的综合单价由完成规定计量单位工程量清单项目所需( )等费用组成。
固定资产变动包括()。
外部培训具体应包括()。
请认真阅读下文,并按要求作答。一个小村庄的故事山谷中,早先有过一个美丽的小村庄。山上的森林郁(yù)郁葱葱,村前河水清澈(chè)见底,天空湛(zhàn)蓝,空气清新甜润。村里住着几十户人家。不知从什么时候起,家家有了锋利的斧
取保候审由检察机关执行。()
当前微机上运行的Windows属于()。
Youmusthaveseenalotofinterestingmovies,______?
最新回复
(
0
)