首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。 求θ的最大似然估计量。
设总体X的概率密度为 其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。 求θ的最大似然估计量。
admin
2019-01-19
47
问题
设总体X的概率密度为
其中θ为未知参数且大于零,X
1
,X
2
,…,X
n
为来自总体X的简单随机样本。
求θ的最大似然估计量。
选项
答案
对于总体X的样本值x
1
,x
2
,…,x
n
,其似然函数为 L(x
1
,x
2
,…,x
n
;θ)=f(x
1
;θ)f(x
2
;θ),…,f(x
n
;θ)=θ
2n
(x
1
,x
2
,…,x
n
)
-3
[*] lnL=2nlnθ一3ln(x
1
,x
2
,…,x
n
)一θ[*] [*]=0, 得到最大似然估计量为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/a1P4777K
0
考研数学三
相关试题推荐
设函数y=y(x)由参数方程确定,则在x的变化区间(0,1)内
设则f(x)在x=0处
设总体x的概率密度函数为f(x,θ)=,一∞<x<+∞,其中θ>0是未知参数,X1,X2,…,Xn是取自总体X的简单随机样本.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,一1,a,5)T,α3=(2,a,一3,一5)T,α4=(一1,一1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
设f(x)=,讨论函数f(x)的连续性,若有间断点,指明其类型.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
假设某射手的命中率为p(0<p<1),他一次一次地对同一目标独立地射击直到恰好两次命中目标为止,以X表示首次命中已射击的次数,以Y表示射击的总次数,试求:(1)随机变量X和Y的联合概率分布;(2)随机变量Y关于X的条件概率分布;
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
随机试题
计数器的内部电路主要是由单稳态触发器构成。()
某公司年产量为x百台机床,总成本为C万元,其中固定成本为2万元,每产1百台增加1万元,市场上每年可销售此商品4百台,其销售总收入R(x)(单位:万元)是x的函数,问每年生产多少台利润最大?
蛋白质合成后空间结构的修饰包括
分包商在施工现场的协调管理工作应由( )。
行为主义学派认为心理健康的破坏与()有关。
阅读某教材必修3第一单元第二课《祝福》教学实录(片段),回答问题。案例:师:有同学说,鲁四老爷并不凶狠。我们现在来看看祥林嫂第一次到鲁家受到了怎样的对待。生:鲁四老爷看不起她。师:你的根据是什么?生:“四叔皱了皱眉,四婶已经知道了
阅读下列资料,回答下列问题。2010年,全国国有建设用地土地供应总量42.8万公顷,比上年增长18.4%。其中,工矿仓储用地15.3万公顷,增长7.9%;商服用地3.9万公顷,增长40.4%;住宅用地11.4万公顷,增长40.3%;基础设施等其他
A、 B、 C、 D、 D
A、刚擦完地B、水管漏水C、水龙头没关D、水壶被碰倒了B
IntroductiontoM.deI’AubepineM.deI’Aubepineisunknowntomanyofhiscountrymen,aswellastothestudentsoffore
最新回复
(
0
)