首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
admin
2018-05-22
82
问题
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有( ).
选项
A、两个极大值点,两个极小值点,一个拐点
B、两个极大值点,两个极小值点,两个拐点
C、三个极大值点,两个极小值点,两个拐点
D、两个极大值点,三个极小值点,两个拐点
答案
C
解析
设当x<0时,f’(x)与x轴的两个交点为(x
1
,0),(x
2
,0),其中x
1
<x
2
;当x>0时,f’(x)与x轴的两个交点为(x
3
,0),(x
4
,0),其中x
3
<x
4
.当x<x
1
时,f’(x)>0,当x∈(x
1
,x
2
)时,f’(x)<0,则x=x
1
为f(x)的极大点;当x∈(x
2
,0)时,f’(x)>0,则x=x
2
为f(x)的极小值点;当x∈(0,x
3
)时,f’(x)<0,则x=0为f(x)的极大值点;当x∈(x
3
,x
4
)时,f’(x)>0,则x=x
3
为f(x)的极小值点;当x>x
4
时,f’(x)<0,则x=x
4
为f(x)的极大值点,即f(x)有三个极大值点,两个极小值点,又f’’(x)有两个零点,根据一阶导数在两个零点两侧的增减性可得,y=f(x)有两个拐点,选(C).
转载请注明原文地址:https://kaotiyun.com/show/aqk4777K
0
考研数学二
相关试题推荐
计算二重积分,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成.
设三阶方阵A,B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则|B|=_______.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
设u=M(x,y)在全平面上有连续偏导数,若求证:u(x,y)为常数;
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ’’(y).
随机试题
下列不属于交易性金融负债的是()
I’ve______forthejobandIhopeIgetit.
某建设工程采用工程总承包模式,总包单位将起重机械安装拆卸工程分包给了专业分包单位,则其安全专项施工方案()。
申报日期栏应填______。提运单号栏应填______。
国际注册投资分析师协会由( )经过3年多的策划成立。
创业板上市公司非公开发行股票的条件不包括()。
本案中,宁某购买农药的行为属于()。如果对宁某有逮捕之必要,应由()负责批准逮捕。
A.WhatstruckhimB.thereforeC.brokeoutPhrases:A.theplague【T1】______insouthernEnglandB.【T2】______wastheconjecture
关于法理学上法律的渊源,下列说法不正确的有()。
请以大学生后勤处的名义于2005年12月20日拟写一份寒假放假通知,具体内容包括:1.学生从2006年1月14日至2月19日放假,假期37天。2.全体师生员工必须严格按照本通知规定的时间休假,早退或晚归而又未履行请假手续者,将按校纪予以处分。3.提醒
最新回复
(
0
)