首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. 证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. 证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.
admin
2019-01-29
41
问题
设α
1
,α
2
,α
3
都是矩阵A的特征向量,特征值两两不同,记γ=α
1
+α
2
+α
3
.
证明γ,Aγ,A
2
γ线性无关,γ,Aγ,A
2
γ,A
3
γ线性相关.
选项
答案
设α
1
,α
2
,α
3
的特征值为a,b,c,由于它们两两不同,α
1
,α
2
,α
3
线性无关, γ=α
1
+α
2
+α
3
,Aγ=aα
1
+bα
2
+cα
3
, A
2
γ=a
2
α
1
+b
2
α
2
+c
2
α
3
,A
3
γ=a
3
α
1
+b
3
α
2
+C
3
α
3
, 则γ,Aγ,A
2
γ对α
1
,α
2
,α
3
的表示矩阵为[*],其行列式为范德蒙行列式,并且(因为a,b,c两两不同)值不为0,于是r(γ,Aγ,A
2
γ)=r(α
1
,α
2
,α
3
)=3,因此γ,Aγ,A
2
γ无关. γ,Aγ,A
2
γ,A
3
γ可以用α
1
,α
2
,α
3
线性表示,因此线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/awj4777K
0
考研数学二
相关试题推荐
求极限:.
函数f(x)=xsinx()
函数y=y(x)由方程cos(x2+y2)+ex—x2y=0所确定,求.
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
用导数定义证明:可导的周期函数的导函数仍是周期函数,且其周期不变.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设n阶(n≥3)矩阵,A=,若矩阵A的秩为n—1,则a必为()
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
已知A,B,A+B,A-1+B-1均为n阶可逆阵,则(A-1+B-1)-1等于()
随机试题
德国心理学家艾宾浩斯提出的遗忘过程是()
紧急人工气道建立的方法有哪些?
A.读码框移B.氨基酸置换C.两者都有D.两者都无点突变(碱基错配)可导致
葡萄糖或氨基酸逆浓度梯度跨细胞膜转运的方式是
梯度磁场的目的是
只能在淋巴细胞中增殖的病毒是
对于前列腺、精囊腺、直肠前部检查应采取的体位是()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
在下图所示的VxWorks&windML平台组成图中,A应为【71】程序,B应为【72】程序。
能正确表述"x为大于等于5并且小于20的数"的VisualBasic表达式是
最新回复
(
0
)