首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. 证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. 证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.
admin
2019-01-29
37
问题
设α
1
,α
2
,α
3
都是矩阵A的特征向量,特征值两两不同,记γ=α
1
+α
2
+α
3
.
证明γ,Aγ,A
2
γ线性无关,γ,Aγ,A
2
γ,A
3
γ线性相关.
选项
答案
设α
1
,α
2
,α
3
的特征值为a,b,c,由于它们两两不同,α
1
,α
2
,α
3
线性无关, γ=α
1
+α
2
+α
3
,Aγ=aα
1
+bα
2
+cα
3
, A
2
γ=a
2
α
1
+b
2
α
2
+c
2
α
3
,A
3
γ=a
3
α
1
+b
3
α
2
+C
3
α
3
, 则γ,Aγ,A
2
γ对α
1
,α
2
,α
3
的表示矩阵为[*],其行列式为范德蒙行列式,并且(因为a,b,c两两不同)值不为0,于是r(γ,Aγ,A
2
γ)=r(α
1
,α
2
,α
3
)=3,因此γ,Aγ,A
2
γ无关. γ,Aγ,A
2
γ,A
3
γ可以用α
1
,α
2
,α
3
线性表示,因此线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/awj4777K
0
考研数学二
相关试题推荐
设平面区域D:(x一2)2+(y一1)2≤1,若比较I1=(x+y)3dσ的大小,则有()
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
设b>a>e,证明:ab>ba.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,使=0.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到z轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=aijxixj在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于().
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
MillionsofAmericansandforeignersseeG.I.Joeasamindlesswartoy,thesymbolofAmericanmilitaryadventurism,butthat’s
Awordisthecombinationofformand______.()
A失血性休克B腹腔出现游离气体C出现腹膜炎体征D腹膜后积气E腹膜炎出现晚而严重结肠破裂
肺心病的主要死亡原因是()
下列哪项不属于瘿病的病因
由香港某旅行社组织的香港旅行团40余人,于2004年10月17日抵达台北,10月18目前往台湾九份风景区观光游览。下午两点多,该团冒雨乘坐的旅游车在九份地区转弯时刹车失控,坠落山谷,造成5人死亡,32人轻伤,4人重伤的惨剧。香港旅行社已为游客上了200万元
按照供应商的重要性分类,即依据供应商对本单位的重要性和本单位对供应商的重要性进行分析,可以分为四种供应商类型。如果公司认为供应商有很强的产品开发能力,采购业务对公司很重要,而且供应商也认为公司的采购业务对他们也非常重要,那么这样的供应商是属于四种供应商中的
植物的器官可分为营养器官及生殖器官。其中,营养器官通常指()等器官,其基本功能是维持植物生命,但在某些状况之下,这些营养器官可能成为繁衍的亲本,由这些器官生长出新的个体。
今年初,我曾经讲过,今年恐怕是中国经济最为困难的一年。我国遭受了严重的雨雪冰冻灾害和特大地震灾害,又面临国内外复杂多变的环境。我们克服重重困难,保持了经济平稳较快发展的态势。上半年国内生产总值同比增长10.4%;农业发展势头良好,夏粮连续五年增产;投资、消
Internationaltradealwayscreatestheneedforforwardoperations,iftheexchangeriskistobehedged.Letusconsidertheca
最新回复
(
0
)