首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非负函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0所围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
设非负函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0所围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
admin
2020-03-16
59
问题
设非负函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0所围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
选项
答案
解微分方程xy’’一y’+2=0,得其通解y=C
1
+2x+C
2
x
2
,其中C
1
,C
2
为任意常数.又已知y=y(x)通过原点时与直线x=1及y=0围成平面区域的面积为2,可得C
1
=0. [*] 因此C
2
=3.故所求非负函数为y=2x+3x
2
(x≥0).又由y=2x+3x
2
可得,在第一象限曲线y=y(x)表示为[*] 直线x=1与曲线y(x)交点为(1,5),过该点作x轴与y轴的垂线,构成的矩形绕y轴旋转所得圆柱体的体积为5π,于是D围绕y轴旋转所得旋转体的体积为V=5π—V
1
,其中[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bB84777K
0
考研数学二
相关试题推荐
求下列曲线的曲率或曲率半径:(Ⅰ)求y=lnx在点(1,0)处的曲率半径.(Ⅱ)求x=t-ln(1+t2),y=arctant在t=2处的曲率.
(Ⅰ)设f(χ)在[χ,χ+δ)((χ-δ,χ])连续,在(χ,χ+δ)((χ-8,χ))可导,又f′(χ)=A(f′(χ)=A),求证:f′+(χ0)=A(f′-(χ0)=A).(Ⅱ)设f(χ)在(χ0-δ,χ0+δ)连续,在(χ0-δ,χ0+
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.证明方程组AX=b有无穷多个解;
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
[2012年]设计算行列式∣A∣.
[2016年]以y=x2一ex和y=x2为特解的一阶非齐次线性微分方程为________.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设矩阵行列式|A|=一1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
随机试题
要求热流体从300℃降到200℃,冷流体从50℃升高到260℃,宜采用()换热。
急性白血病感染产生的主要原因是()
_____hemadeanimportantspeechatthemeetingwastrue.
ItwasSunday.Thetrainswerecrowded.Agentlemanwaswalkingalongtheplatform【21】aplace.Inoneof【22】hesawavacantseat
(2018年)当某管路系统风量为400m3/h时,系统阻力为200Pa;当使用该系统将空气送日有正压100Pa.的密封舱时,其阻力为500Pa,则此时流量为()。
砌块砌筑用砂浆的稠度以小于( )为宜。
边防检查工作主要包括()
基层群众性自治组织的特点有()
以下程序的输出结是_______。#include<stdio.h>main(){inta=200;#definea100printf("%d",a);#undefaprintf(%d",a
Pen-palLetters:TheCross-curricularExperienceIaskedmycousin,ateacherinTucson,Arizona,tohaveourclassesbecome
最新回复
(
0
)