首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 试检验假设H0:σ12=σ22,H1:σ12≠σ22(取α=0.05);
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 试检验假设H0:σ12=σ22,H1:σ12≠σ22(取α=0.05);
admin
2019-03-25
71
问题
两种小麦品种从播种到抽穗所需的天数如下:
设两样本依次来自正态总体N(μ
1
,σ
1
2
),N(μ
2
:σ
2
2
),μ
i
,σ
i
,i=1,2,均未知,两样本相互独立。
试检验假设H
0
:σ
1
2
=σ
2
2
,H
1
:σ
1
2
≠σ
2
2
(取α=0.05);
选项
答案
本题需检验 (1)H
0
:σ
1
2
=σ
2
2
,H
1
:σ
1
2
≠σ
2
2
(α=0.05)。 (2)H'
0
:μ
1
=μ
2
,H'
1
:μ
1
≠μ
2
(α=0.05)。 已知n
1
=10,n
2
=10,[*]=99.2,S
1
2
=0.84,[*]=98.9,S
2
2
=0.77。 [*]=1.09,而F
0.025
(9,9)=4.03,F
0.975
(9,9)=[*],则 [*]<1.09<4.03. 故接受H
0
,即认为两者方差相等。
解析
转载请注明原文地址:https://kaotiyun.com/show/cW04777K
0
考研数学一
相关试题推荐
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
设随机变量X的概率密度为f(x)=对X独立地重复观察4次,用y表示观察值大于的次数,求Y2的数学期望。
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数X的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fZ(z)。
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{X<Y}=()
设总体X的分布函数为其中θ为未知参数且大于零,X1,X2,…,Xn是来自总体X的简单随机样本。(Ⅰ)求E(X),E(X2);(Ⅱ)求θ的最大似然估计量;(Ⅲ)是否存在实数a,使得对任意的ε>0,都有
设总体X的概率分布为其中θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3,使T=aiNi为θ的无偏估计量,并求T的方差。
设总体X的概率密度为其中参数θ(0<0<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。(Ⅰ)求总体X的分布函数F(x);(Ⅱ)求统计量的分布函数F(x);(Ⅲ)如果用作为θ的估计量,讨论它是否具有无偏性
设总体X的概率密度为f(x;θ)=其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,若Xi2是θ2的无偏估计,则c=________。
随机试题
A.3~5周B.1周C.10天D.3周E.6周产后胎盘附着处子宫内膜全部修复为产后()
统计学是以客观现象的数量特征和()为其研究对象的。
下列选项中,不属于瓦格纳的税收“四项九端”原则的是()。
实施教师资格制度有利于提高教师队伍素质,促进教师职业向专业化方向发展。()
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:(I)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)收敛;(Ⅲ).
下列关于集合的并运算的说法不正确的是
请根据以下各小题的要求设计VisualBasic应用程序(包括界面和代码)。(1)在名称为Form1的窗体上画1个名称为Label1的标签数组,含3个标签控件,下标从0开始,标签上的内容(按下标顺序)分别是:“等级考试”,“程序设计”,“VB程
A、Thereare32piecesinachessset.B、Chessisplayedbytwopersons.C、Knightscanjumpoverenemy’spieces.D、Theobjectof
人类在历史上的生活正如旅行一样。旅途上的征人所经过的地方,有时是坦荡平原,有时是崎岖险路。志于旅途的人,走到平坦的地方,应是高高兴兴地向前走,走到崎岖的境界,愈是奇趣横生,觉得在此奇绝壮绝的境界,愈能感到一种冒险的美趣。中华民族现在所逢的史路,是一段崎岖险
Weseealotofadvertisementsalmosteverydayandeverywhere.Someadvertisementsaregood,butsomearenotsogood.Writeac
最新回复
(
0
)