首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 试检验假设H0:σ12=σ22,H1:σ12≠σ22(取α=0.05);
两种小麦品种从播种到抽穗所需的天数如下: 设两样本依次来自正态总体N(μ1,σ12),N(μ2:σ22),μi,σi,i=1,2,均未知,两样本相互独立。 试检验假设H0:σ12=σ22,H1:σ12≠σ22(取α=0.05);
admin
2019-03-25
57
问题
两种小麦品种从播种到抽穗所需的天数如下:
设两样本依次来自正态总体N(μ
1
,σ
1
2
),N(μ
2
:σ
2
2
),μ
i
,σ
i
,i=1,2,均未知,两样本相互独立。
试检验假设H
0
:σ
1
2
=σ
2
2
,H
1
:σ
1
2
≠σ
2
2
(取α=0.05);
选项
答案
本题需检验 (1)H
0
:σ
1
2
=σ
2
2
,H
1
:σ
1
2
≠σ
2
2
(α=0.05)。 (2)H'
0
:μ
1
=μ
2
,H'
1
:μ
1
≠μ
2
(α=0.05)。 已知n
1
=10,n
2
=10,[*]=99.2,S
1
2
=0.84,[*]=98.9,S
2
2
=0.77。 [*]=1.09,而F
0.025
(9,9)=4.03,F
0.975
(9,9)=[*],则 [*]<1.09<4.03. 故接受H
0
,即认为两者方差相等。
解析
转载请注明原文地址:https://kaotiyun.com/show/cW04777K
0
考研数学一
相关试题推荐
设a是n维单位列向量,A=E-ααT,证明:R
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的。
设随机变量X的概率密度为f(x)=对X独立地重复观察4次,用y表示观察值大于的次数,求Y2的数学期望。
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fZ(z)。
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,…,Xn为来自总体X的简单随机样本,T=max{X1,X2,…,Xn}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得aT为θ的无偏估计。
设总体X的概率分布为其中θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3,使T=aiNi为θ的无偏估计量,并求T的方差。
随机试题
有关劳务分包的规定正确的有()。
跷起大拇指手势,在日本表示()。
男性,68岁。慢性咳喘20余年,痰多、黏稠而不易咳出。近年来症状加重,动则气急就诊。体检:消瘦,端坐位,双手撑床,双肩高耸。吸气时见胸锁乳突肌及上胸部肌肉收缩,两肺哮鸣音。心脏(一),该患者出现呼吸困难是属于
当项目实施中出现合同未明确事项时,可以采用以()为主导对合同进行分析处理。
何谓热处理?其作用是什么?
下列期货合约中,采用实物交割的有()。
2017年12月31日,甲公司涉及一项未决诉讼,预计很可能败诉,甲公司若败诉,需承担诉讼费10万元并支付赔款300万元,但基本确定可从保险公司获得60万元的补偿。2017年12月31日,甲公司因该诉讼应确认预计负债的金额为()万元。
真实经济周期理论认为,市场机制本身是完善的,在长期或短期中都可以自发地使经济实现充分就业的均衡。()
展示学校办学宗旨和特色的课程是()。
根据以下资料。回答问题。2015年1~3月,国有企业营业总收入103155.5亿元,同比下降6%。其中,中央企业收入63191.3亿元,同比下降7%。地方国有企业收入39964.2亿元,同比下降4.2%。1~3月,国有企业营业总成本10
最新回复
(
0
)