首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。 (Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得 ∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)求极限。
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。 (Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得 ∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)求极限。
admin
2020-03-05
15
问题
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。
(Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得
∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)一f(一θx)]。
(Ⅱ)求极限
。
选项
答案
(Ⅰ)设F(x)=∫
0
x
f(t)dt+∫
0
-x
f(t)dt,x∈[一e,e]。则F(x)在[0,x]上连续,在(0,x)内可导。 由拉格朗日中值定理F(x)一F(0)=F’(θx)(x一0),其中0<θ<1。即 ∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)由(Ⅰ)中结论,可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ccS4777K
0
考研数学一
相关试题推荐
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
如果级数都发散,则()
设三元函数点M(0,0,0),始于点M的单位向量l=(cosα,cosβ,cosγ).考虑点M处的偏导数则()
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设λ1、λ2为n阶实对称矩阵A的两个不同特征值,X1为对应于λ1的一个单位特征向量,则矩阵B=A—λ1X1X1T有两个特征值为________.
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
设有一半径为R的球体,P0是此球表面上的一个定点,球体上任意一点的密度与该点到P0的距离的平方成正比(比例常数为k>0),求球体的重心位置.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
随机试题
用冰帽给高热病人降温,其原理是()
在制定风险防范措施时,厂区周围工矿企业、车站、码头、交通干道等应设置()。
根据企业所得税法的规定,企业所得税前可扣除的损失有()。
当银行业从业人员经办亲戚的贷款业务时,应()
《普通高中生物课程标准(实验)》在教学建议中提出,教师应根据不同的教学内容注意采用多样化的教学方式。这些多样化的教学方式主要包括哪些?
2005年4月27日召开的国务院会议强调,必须把解决钢铁投资规模和价格上升幅度过大的问题,作为当前加强宏观调控的一个突出任务。()
符合我国宪法关于私有财产规定的是()。
MakeYourHolidaysMoreMeaningfulI.Whattodobeforetheholidayseason1)【T1】______aweeklycalendar【T1】______2)starteli
更高的办学水平、更大的责任感和更多的投资使得我们的学生取得更高的考试分数和毕业成绩。(bring)
(show)______theID.card,thestudentswereallowedtoentertheexam-roomonebyone.
最新回复
(
0
)