首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。 (Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得 ∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)求极限。
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。 (Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得 ∫0xf(t)dt+∫0-xf(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)求极限。
admin
2020-03-05
38
问题
设f(x)在[一e,e]上连续,在x=0处可导,且f’(0)≠0。
(Ⅰ)证明:对于任意x∈(0,e),至少存在一个θ∈(0,1),使得
∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)一f(一θx)]。
(Ⅱ)求极限
。
选项
答案
(Ⅰ)设F(x)=∫
0
x
f(t)dt+∫
0
-x
f(t)dt,x∈[一e,e]。则F(x)在[0,x]上连续,在(0,x)内可导。 由拉格朗日中值定理F(x)一F(0)=F’(θx)(x一0),其中0<θ<1。即 ∫
0
x
f(t)dt+∫
0
-x
f(t)dt=x[f(θx)一f(一θx)]。 (Ⅱ)由(Ⅰ)中结论,可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ccS4777K
0
考研数学一
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
已知A是四阶矩阵,α1,α2是矩阵A属于特征值λ=2的线性无关的特征向量,若A得每一个特征向量均可由α1,α2线性表出,那么行列式|A+E|=______.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
设有一半径为R的球体,P0是此球表面上的一个定点,球体上任意一点的密度与该点到P0的距离的平方成正比(比例常数为k>0),求球体的重心位置.
设A为n阶矩阵,αn≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α1,α2,α3线性无关.
讨论函数f(x)=(x>0)的连续性.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程+(y+sinx)(dx/dy)3。变换为y=y(x)所满足的微分方程,(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解
设L是平面单连通有界区域σ的正向边界线,且L不经过原点。n0是L上任一点(x,y)处的单位外法线向量。设平面封闭曲线L上点(x,y)的矢径r=xi+yj,r=|r|,θ是n0与r的夹角,试求。
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
随机试题
根据《医疗机构医疗保障定点管理暂行办法》,关于医疗机构申请医保定点程序的说法,错误的是
试对下表三个互斥方案作出取舍决策,基准收益率ic=10%。
【2013年第50题】混凝土结构设计规范中,HPB300钢筋用下列何种符号表示?
在烟花爆竹厂的设计过程中,危险性建筑物、场所与周围建筑物之间应保持一定的安全距离,该距离是分别按建筑物的危险等级和计算药量计算后取其最大值。下列对安全距离的要求中,正确的有()。
关于保温工程质量的说法,正确的是()。
对一般保证的保证人与债权人未约定保证期间的,保证期间为主债务履行期届满之日起()个月。
赵、钱、孙、李四人于2013年1月出资设立A有限合伙企业,其中赵、钱为普通合伙人,孙、李为有限合伙人。合伙企业存续期间,发生以下事项:(1)6月,合伙人孙同A合伙企业进行了120万元的交易,合伙人赵认为,由于合伙协议对此没有约定,因此,有限合伙人孙不得同本
“赵钱孙李,周吴郑王,冯陈褚卫,蒋沈韩杨……”许多华人都对这四字谣感到______,即使一个_____的人也听说过百家姓。填入划横线部分最恰当的一项是:
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为()
FloodDevastatesBangladeshAmassivefloodcausedbyheavymonsoonrainshasdevastatedlargepartsofBangladesh.Represen
最新回复
(
0
)