首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2016-01-11
81
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*] 若λ=2是特征方程的二重根,则有2
2
一16+18+3a=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵[*] 的秩为1,故λ=2对应的线性无关的特征向量有两个,从而A可相似对角化.若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方数,从而18+3a=16,解得[*].当[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故λ=4对应的线性无关的特征向量只有一个,从而A不可相似对角化.
解析
本题主要考查矩阵特征值、特征向量的求法及矩阵相似于一个对角矩阵的充分必要条件.通过讨论矩阵特征方程二重根的情况以及对应的线性无关的特征向量的个数,从而决定矩阵A是否可以相似于对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/ce34777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,且r(A)=r()=r
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设A是3阶矩阵,3维非零列向量α不是A的特征向量,且A2α+Aα-2α=0,f(x)=|xE-A|,则存在x0∈(-2,1)使得曲线y=f(x)在(x0,f(x0))处的切线垂直于()
设随机变量X的慨率密度为f(x),EX存在,若对常数a,有f(a+x)=f(a-x),则EX=()
设A是3阶矩阵,α1,α2,α3是3维列向量且α1≠0,Aα1=kα1,Aα2=α1+kα2,Aα3=α2十kα3,则()
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设,下列矩阵中与A既不相似也不合同的是()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
随机试题
超文本传输协议的英文缩写是()。
不符合急性红白血病(AML-M6)骨髓象的是
义齿初戴时要检查以下内容.除了
下列各组数值比较中,适用于进度控制动态比较的有()。
关于温度取源部件的安装,正确的说法是()。
因劳务派遣单位存在违法行为,给被派遣劳动者造成损害的,()。
某商品流通企业既经营生产资料又经营生活资料,经营的商品主要有汽车、钢材、水泥、轮胎、空调、彩电、电脑、服装、鞋、粮食、食盐、蔬菜、牙膏、冷饮等。该企业经常根据商品的供求形态来选择预测方法,并对企业经营的商品进行预测。根据上述资料,回答下列问题。该企业经
根据下述材料,回答下列问题:某研究者采用父母教养方式评价量表(EMBU)和学习动机量表调查了180名初中一年级学生。该研究者计算出每名学生在父母教养方式评价量表的9个维度上的得分并根据每名学生在9个维度上得分情况确定他们的家庭教养方式类型(专制型
A、Itisthrownaway.B、Itisburnt.C、Itisturnedintosomesolidobjects.D、Itisstoredunderground.B选项和方式有关。本题是细节题。从Theres
____________(有什么意义)havingthissuperbtoolifwecannotuseit?
最新回复
(
0
)