首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn+anχ1)2.a1,a2,…,an满足什么条件时f(χ1,χ2,…,χn)正定?
已知二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn+anχ1)2.a1,a2,…,an满足什么条件时f(χ1,χ2,…,χn)正定?
admin
2019-05-14
51
问题
已知二次型f(χ
1
,χ
2
,…,χ
n
)=(χ
1
+a
1
χ
2
)
2
+(χ
2
+a
2
χ
3
)
2
+…+(χ
n
+a
n
χ
1
)
2
.a
1
,a
2
,…,a
n
满足什么条件时f(χ
1
,χ
2
,…,χ
n
)正定?
选项
答案
记y
1
=χ
1
+a
1
χ
2
,y
2
=χ
2
+a
2
χ
3
,…,y
n
=χ
n
+a
n
χ
1
,则 [*] 简记为Y=AX. 则f(χ
1
,χ
2
,…,χ
n
)=Y
T
Y=X
T
A
T
AX.于是,实对称矩阵A
T
A就是f(χ
1
,χ
2
,…,χ
n
)的矩阵.从而f正定就是A
T
A正定. A
T
A正定的充要条件是A可逆.计算出|A|=1+(-1)
n-1
a
1
a
2
…a
n
.于是,f正定的充要条件为a
1
a
2
…a
n
≠(-1)
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ci04777K
0
考研数学一
相关试题推荐
设直线L过A(1,0,0),8(0,1,1)两点,将L绕Z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
设随机变量(X,Y)在区域D={(χ,y):0≤χ≤2,0≤y≤2}上服从均匀分布,求矩阵A=是正定矩阵的概率.
设随机变量(X,Y)在区域D={(χ,y):0≤χ≤1,0≤y≤1}上服从均匀分布,随机变量U=(Y-X)2.求U的期望与方差.
一批玻璃杯整箱出售,每箱装有12只,其中含有0个,1个,2个次品的概率分别是0.6,0.2,0.2.一顾客需买该产品5箱,他的购买方法是:任取一箱,打开后任取3只进行检查,若无次品就买下该箱,若有次品则退回另取一箱检查,求他需要检查的箱数X的概率分布及检查
如图13—2,设单位圆χ2+y2=1上点M(χ0,y0)处的切线L与抛物线y=χ2-2围成的图形的面积S达到最小.求点M的坐标和切线L的方程.
设正态总体X~N(μ,σ2),X1,X2,…,Xn为来自X的简单随机样本,求证:
一个班内有20位同学都想去参观一个展览会,但只有3张参观票,大家同意通过这20位同学抽签决定3张票的归属.计算下列事件的概率:(Ⅰ)“第二人抽到票”的概率p1;(Ⅱ)“第二人才抽到票”的概率p2;(Ⅲ)“第一人宣布抽到了票,第二人又抽到票”的概率p3
设f(x)=x3一3x+q,其中常数q∈(一2,2),则f(x)的零点的个数为______.
设周期为2π的函数f(x)=的傅里叶级数为(ancosnx+bnsinnx),(Ⅰ)求系数a0,并证明an=0,(n≥1);(Ⅱ)求傅里叶级数的和函数g(x)(一π≤x≤π),及g(2π)的值.
设函数f(x)=πx+x2(-π<x<π)的傅里叶级数为(ancosnx+bnsinnx),则b3=________.
随机试题
在关系的基本运算中,下列属于专门关系运算的是______。
中共十九大报告指出,我国到21世纪中叶的战略目标是()
铁的主要功能是
下面哪项不是防尘工作"八字方针"中的内容
高血压危重症快速降压宜选用()
在无形资产评估实践中,对法律和合同同时分别规定无形资产的有效期限和收益期限,但时间长短不同的,()来确定期限。
某企业本月生产甲、乙两种产品,其中甲产品技术工艺过程较为简单,生产批量较大;乙产品工艺过程较为复杂,生产批量较小。其他有关资料见下表:假设经作业分析,该企业根据各项作业的成本动因性质设立了机器调整准备、质量检验、设备维修、生产订单四个作业成本中心;各作
北美青少年的平均身高增长幅度要大于中国同龄人。有研究表明,北美中小学的每周课外活动时间要明显多于中国的中小学生。因此,中国青少年要长得更高,就必须在读中小学时增加课外活动时间。以下哪项是上述论证所必须假设的?
窗体上有一个名称为VScrolll的垂直滚动条,要求程序运行时,滚动块的初始位置在最下端,应该使VScrolll.Value的值等于
Thesolidarityamongtheyoung,especiallythe386Generation,issostrongthatit’shelpingto______thecountry’sdeep-roote
最新回复
(
0
)