首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实对称矩阵,且A的特征值都大于零,证明A为正定矩阵。
设A为实对称矩阵,且A的特征值都大于零,证明A为正定矩阵。
admin
2021-11-25
35
问题
设A为实对称矩阵,且A的特征值都大于零,证明A为正定矩阵。
选项
答案
A所对应的二次型为f=X
T
AX 因为A是实对称矩阵,所以存在正交变换X=QY,使得 f=X
T
AX[*]λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
+…+λ
n
y
n
2
,其中λ
i
>0(i=1,2,…,n) 对任意的X≠0,因为X=QY,所以Y=Q
T
X≠0 于是f=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
+…+λ
n
y
n
2
>0,即对任意的X≠0有X
T
AX>0,所以X
T
AX为正定二次型,故A为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/cpy4777K
0
考研数学二
相关试题推荐
设,其中f可导,且f’(0)≠0,则dy/dx|t=0=__________.
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设A是3阶矩阵,有特征值λ1≠λ2≠λ3,则B=(λ1E-A)(A2E—A)(λ2E-A)(λ3E-A)=_______.
设A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn)。记向量组(I)α1,α2,…,αn,向量组(Ⅱ)β1,β2,…,βn,向量组(Ⅲ)γ1,γ2,…,γn。已知向量组(Ⅲ)线性相关,则有()
设A是n阶矩阵,下列命题错误的是().
比较下列积分值的大小:Ji=e-(x2+y2)dxdy,i=1,2,3,其中D1={x,y)|x2+y2≤R2},D2={(x,y)|x2+y2≤2R2},D3={(x,y)||x|≤R,|y|≤R}.则J1,J2,J3之间的大小顺序为
设函数f(χ)二阶可导,且f′(χ)>0,f〞(χ)>0,△y=f(χ+△χ)-f(χ),其中△χ<0,则().
设A,B为n阶方阵,P,Q为n阶可逆矩阵,下列命题不正确的是()
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
随机试题
男,41岁,有烟酒嗜好,4年前出现游走性浅静脉炎,而后出现左下肢麻木、发凉,伴间歇性跛行3年,足背动脉、胫后动脉搏动消失。最可能的诊断是
章某作为马某的债权人,对马某的债务人林某提起代位权诉讼。马某作为第三人对章某的债权提出异议。经法院审查,异议成立。人民法院应当如何处理?
曹某在“华荣”BBs上发表留言,批评刘某足“黑社会分子”。刘某看到该留言后,委托该市的新野公证处对该互联网网页进行公证,并以此为证据,向法院起诉,主张王某侵犯了其名誉权。则该证据属于:()
中国基金业协会根据相关法律的规定,对非公开募集基金管理人进行()管理,并对募集完成的非公开募集基金依法进行()管理。
下列各项中,不符合《税收征管法》延期缴纳税款规定的是()。
5,6,7,11,13,18,24,(),42
下列有关计算机构成及性能的表述中,不正确的是()。
关于现代生物技术,下列说法错误的是:
与自然主义相对峙的是理想主义。在理想派看,自然并不全美,美与丑相对,有比较后有美丑,美自身也有高下等差,艺术对于自然,应该披沙拣金,取长弃短。理想主义比自然主义较胜一筹,因为它虽不否认艺术模仿自然,却以为这种模仿并不是呆板的抄袭,须经过一番理想化。理想化有
TheWorldinaGlass:SixDrinksThatChangedHistoryTomStandageurgesdrinkerstosavorthehistoryoftheirfavoritebev
最新回复
(
0
)