首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲面积分J= 其中S+为上半椭球面:=1(0≤z≤c)的上侧. (Ⅰ)求证:J=,其中Ω是上半椭球体:≤1(0≤z≤c); (Ⅱ)求曲面积分J.
设曲面积分J= 其中S+为上半椭球面:=1(0≤z≤c)的上侧. (Ⅰ)求证:J=,其中Ω是上半椭球体:≤1(0≤z≤c); (Ⅱ)求曲面积分J.
admin
2020-08-03
63
问题
设曲面积分J=
其中S
+
为上半椭球面:
=1(0≤z≤c)的上侧.
(Ⅰ)求证:J=
,其中Ω是上半椭球体:
≤1(0≤z≤c);
(Ⅱ)求曲面积分J.
选项
答案
(Ⅰ)由题设S
*
的方程,J可简化成 [*] 要将曲面积分J化为三重积分,可用高斯公式.由于S
+
不是封闭曲面,故要添加辅助面 [*] 取法向量n向下,S
+
与S
1
+
所围的区域记为Ω,它的边界取外侧,于是在Ω上用高斯公式得 [*] 其中S
1
+
上的曲面积分为零,因为S
1
+
与yz平面及zχ平面均垂直,又在S
1
+
上z=0. (Ⅱ)求曲面积分J转化为求题(Ⅰ)中的三重积分.怎样计算这个三重积分: [*] 因为力是半椭球体,不宜选用球坐标变换与柱坐标变换.我们用先二(先对χ,y积分)后一(后对z积分)的积分顺序求 [*] 由于z∈[0,c],与z轴垂直的平面截Ω得区域D(z)为 [*] 又这个椭圆的两个半轴分别为[*],面积是,πab(1-[*]),于是 [*] 但是,由坐标的轮换对称性,有J
1
=J
2
=J
3
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dgv4777K
0
考研数学一
相关试题推荐
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
A、 B、 C、 D、 D
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x2x3在x12+x22+x32=1条件下的最大及
设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
已知方阵A=[α1α2α3α4],α1,α2,α3,α4均为n维列向量,其中α2,α3,α4线性无关,α1=2α2—α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的解.
(05年)设D={(x,y)|x2+y2≤,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
求曲面z=x2+y2+1在点M(1,—1,3)的切平面与曲面z=x2+y2所围成区域的体积.
设f(x,y)=(x-6)(y+8),求函数f(x,y)在点(x,y)处的最大的方向导数g(x,y),并求g(x,y)在区域D={(x,y)|x2+y2+z2≤25}上的最大值与最小值.
[*]用球面坐标,
随机试题
在D盘下新建一个Excel工作簿,完成以下操作:(1)在Sheet1工作表的A1:H6区域中建立和编辑如表所示的数据表。(2)设置“班级学习成绩表”为居中、加粗、字号20,“高一”、“高二”和“高三”为居中、加粗、字号16,各班级标题居中、加粗,其余
静脉回流的影响因素,包括
类风湿关节炎最早侵犯的关节是
某城市小学投资700万元建设教学楼,组织工程施工公开招标,招标文件规定投标人应具备的资格条件中,正确合理的是()。
根据《测绘法》,省、自治区、直辖市和自治州、县、自治县、市行政区域界线的标准画法图,由()拟订,报国务院批准后公布。
在下列给出的投资方案评价方法中,可用于计算期不同的互斥型方案评价的动态方法是()。
Whatdoesthefutureholdfortheproblemofhousing?Agood(1)_____depends,ofcourse,onthemeaningof"future".Ifoneis
现代计算机中采用二进制码,下列选项中不是它的优点是
Thecurrentadministration,beingworriedoversomeforeigntradebarriersbeingremovedandourexportsfailingtoincreaseas
NicholasChauvin,aFrenchsoldier,airedhisvenerationofNapoleonBonaparteso______andunceasinglythathebecamethelaug
最新回复
(
0
)