首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
admin
2018-06-15
69
问题
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)
-1
A].
选项
答案
(E+BA)[E-B(E+AB)
-1
A] =E+BA-B(E+AB)
-1
A-BAB(E+AB)
-1
A =E+BA-B(E+AB)(E+AB)
-1
A=E+BA-BA=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/eDg4777K
0
考研数学一
相关试题推荐
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设A是n阶可逆阵,每行元素之和都等于常数a.证明:a≠0;
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关.证明:A不可逆.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知三元二次型XTAX经正交变换化为,又知矩阵B满足矩阵方程其中α=[1,1,-1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设A是n阶实矩阵,将A的第i列与j列对换,然后再将第i行和第j行对换,得到B,则A,B有()
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1正确命题的个数为()
随机试题
________表示的是CPU内数字脉冲信号的振荡速度。
现病史不包括
与体层摄影模糊度无关的是
不属于β一内酰胺酶抑制剂的药物有()。
桩基施工时为避免对地下构筑物的破坏,混凝土灌注桩施工安全控制还涉及()等。
甲公司决定为部门经理每人租赁住房一套供个人免费使用,同时提供轿车免费使用,所有外租住房的月租金为1.5万元,所有轿车的月折旧额为1万元的账务处理正确的有()。
1903年颁布癸卯学制,标志着我国开始实行近代学校教育制度。
规则:行为
Somepeoplesaylovemakestheworldgoaround.Otherssayitisnotlove:it’smoney.Sincethetruthisthatitisenergythat
Youngpeopletendtobecriticaloftheirparentsattimesandblamethemformostofthemisunderstandingsbetweenthem.Ithin
最新回复
(
0
)