首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0, F(x)=du. 求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0, F(x)=du. 求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
admin
2020-03-15
84
问题
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0,
F(x)=
du.
求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
选项
答案
由F(x)=x[*]du,则 [*] =[*]du. 当0<x<1时,[*]>u>1,从而f([*])>f(u),F′(x)=[*]-f(u)]du>0; 当1<x<+∞时,0<[*]<u<1,从而f([*])<f(u),F′(x)=[*]du>0. 又在x=1处F(x)连续,所以F(x)在区间(0,+∞)上严格单调增加. [*] 所以F″(1)=0,且当0<x<1时,F″(x)<0,曲线y=F(x)是凸的;当x>1时,F″(x)>0,曲线y=F(x)是凹的.所以点(1,0)为曲线y=F(x)上的唯一拐点,且凸区间为(0,1),凹区间为(1,+∞).
解析
转载请注明原文地址:https://kaotiyun.com/show/eZA4777K
0
考研数学二
相关试题推荐
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,—1,0,1),α4=(5,1,6,2),α5=(2,—1,4,1)。求向量组的秩。
设A是n阶反对称矩阵。试举一个4阶不可逆的反对称矩阵的例子。
设f(x1,x2,x3)=4xx22—3x32—4x1x3+4x1x2+8x2x3。写出二次型的矩阵形式。
二次型f(x1,x2,x3)=(x1+x2)2+(x2—x3)2+(x3+x1)2的秩为________。
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x1,x2,x3)=xTAx在x0=(1,1,1)T的值f(1,1,1)=x0TAx0=________。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:(M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
[2003年]设函数f(x)=问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
[2009年]函数f(x)=的可去间断点的个数为().
[2011年]已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则().
[2008年]设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是().
随机试题
下列说法错误的一项为:()
以下哪项是新生儿败血症的特征性表现
农民在受动物粪便污染的土地上耕作最易感染的疾病是
A.邪气偏盛B.阴阳失调C.阴毒结聚D.正气不足E.经络阻塞形成瘤的主要病机是()
下列选项中不符合煤气制气厂选址原则的是()。
以下各项中,()可以作为经营单位进行填报。
ABC公司是一家上市公司,该公司2015年末资产总计为10000万元,其中负债合计为2000万元。该公司适用的所得税税率为25%。相关资料如下:资料一:预计ABC公司净利润持续增长,股利也随之相应增长。相关资料如表1所示:资料二:ABC公司认为201
()是指为委托人提供房地产信息和居间代理业务的经营活动。
【2010.福建】下列选项体现趋避冲突的是()。
能够提高操作性反应的概率的各种手段、措施叫()。
最新回复
(
0
)