设函数f(x)在区间(0,+∞)上可导,且f′(x)>0, F(x)=du. 求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.

admin2020-03-15  67

问题 设函数f(x)在区间(0,+∞)上可导,且f′(x)>0,
F(x)=du.
求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.

选项

答案由F(x)=x[*]du,则 [*] =[*]du. 当0<x<1时,[*]>u>1,从而f([*])>f(u),F′(x)=[*]-f(u)]du>0; 当1<x<+∞时,0<[*]<u<1,从而f([*])<f(u),F′(x)=[*]du>0. 又在x=1处F(x)连续,所以F(x)在区间(0,+∞)上严格单调增加. [*] 所以F″(1)=0,且当0<x<1时,F″(x)<0,曲线y=F(x)是凸的;当x>1时,F″(x)>0,曲线y=F(x)是凹的.所以点(1,0)为曲线y=F(x)上的唯一拐点,且凸区间为(0,1),凹区间为(1,+∞).

解析
转载请注明原文地址:https://kaotiyun.com/show/eZA4777K
0

最新回复(0)