首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0, F(x)=du. 求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0, F(x)=du. 求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
admin
2020-03-15
86
问题
设函数f(x)在区间(0,+∞)上可导,且f′(x)>0,
F(x)=
du.
求F(x)的单调区间,并求曲线y=F(x)的图形的凹凸区间及拐点坐标.
选项
答案
由F(x)=x[*]du,则 [*] =[*]du. 当0<x<1时,[*]>u>1,从而f([*])>f(u),F′(x)=[*]-f(u)]du>0; 当1<x<+∞时,0<[*]<u<1,从而f([*])<f(u),F′(x)=[*]du>0. 又在x=1处F(x)连续,所以F(x)在区间(0,+∞)上严格单调增加. [*] 所以F″(1)=0,且当0<x<1时,F″(x)<0,曲线y=F(x)是凸的;当x>1时,F″(x)>0,曲线y=F(x)是凹的.所以点(1,0)为曲线y=F(x)上的唯一拐点,且凸区间为(0,1),凹区间为(1,+∞).
解析
转载请注明原文地址:https://kaotiyun.com/show/eZA4777K
0
考研数学二
相关试题推荐
向量组α1=(1,0,1,2),α2=(0,1,2,1),α3=(—2,0,—2,—4),α4=(0,1,0,1),α5=(0,0,0,—1),则向量组α1,α2,α3,α4,α5的秩为________。
设A是m×n矩阵,B是n×m矩阵。构造(m+n)阶矩阵计算HG和GH。
设n阶矩阵A和B满足A+2B=AB。证明:A—2E为可逆矩阵,其中E为n阶单位矩阵。
设n阶矩阵A和B满足等式AB=aA+bB,其中a和b为非零实数。证明:AB=BA。
设二次型f(x1,x2,x3)=ax12+ax22+ax32+2x1x2正定,求a的取值范围。
设A为n阶方阵,证明:R(An)=R(An+1)。
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2008年]设函数f(x)=sinx,则f(x)有().
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
结石性胆囊炎临床症状明显者的根本治疗方法应用
有关锐利度和模糊度的叙述,错误的是
下列穴位中,可治疗痔疮的是
A.左侧卧位B.坐位身体前倾C.仰卧位D.右侧卧位E.从卧位或下蹲位迅速站立下列疾病,听诊时采用上述哪种呼吸或体位,杂音最清晰
背景资料:某大型水利水电工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用
各相关机关和单位在实施工程建设强制性标准的监督管理中的作用是()。
按照《建设工程质量管理条例》的规定,( )单位不得转包或者违法分包工程项目。
下面是天津、上海、北京、重庆四城市某日的天气预报。已知四城市有三种天气情况,天津和北京的天气相同,上海和重庆当天都没有雨,那么,以下判断不正确的是( )
一只蚂蚁发现了一只死螳螂,立刻回洞找来10只蚂蚁搬,搬不动;然后每只蚂蚁回去各找来10只蚂蚁,还是搬不动;于是每只蚂蚁又回去找来10个伙伴,大家齐心协力,终于把死螳螂拖回洞里。问一共有多少只蚂蚁参加了搬运?
MeaninginLiteratureI.AUTHOR—Interpretauthor’sintendedmeaningbya)Readingotherworksby【T1】_____【T1】______b)Knowingc
最新回复
(
0
)