首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
admin
2020-03-10
56
问题
设A是n阶矩阵,A=E+xy
T
,x与y都是n×1矩阵,且x
T
y=2,求A的特征值、特征向量.
选项
答案
令B=xy
T
=[*](y
1
,y
2
,…,y
n
),则B
2
=(xy
T
)(xy
T
)=x(y
T
x)y
T
=2xy
T
=2B, 可见B的特征值只能是0或2. 因为r(B)=1,故齐次方程组Bx=0的基础解系由n-1个向量组成,则 [*] 基础解系是:α
1
=(-y
2
,y
1
,0,…,0)
T
, α
2
=(-y
3
,0,y
1
,…,0)
T
,…, α
n-1
=(-y
n
,0,0,…,y
1
)
T
. 这正是B的关于λ=0,也就是A关于λ=1的,n-1个线性无关的特征向量. 由于B
2
=2B,对B按列分块,记B=(β
1
,β
2
,…,β
n
),则 B(β
1
,β
2
,…,β
n
)=2(β
1
,β
2
,…,β
n
),即Bβ
i
=2β
i
.可见α
n
=(x
1
,x
2
,…,x
n
)
T
是B关于λ=2,也就是A关于λ=3的特征向量. 那么,A的特征值是1(n-1重)和3,特征向量分别是 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,k
n
α
n
,其中k
1
,k
2
,…,k
n-1
不全为0,k
n
≠0.
解析
令B=xy
T
,则A=E+B,如λ是B的特征值,α是对应的特征向量,那么
Aa=(B+E)α=λα+α=(λ+1)α.
可见λ+1就是A的特征值,α是A关于λ+1的特征向量.反之,若Aα=λα,则有Bα=(λ-1)α.
所以,为求A的特征值、特征向量就可转化为求B的特征值、特征向量.
转载请注明原文地址:https://kaotiyun.com/show/g5D4777K
0
考研数学三
相关试题推荐
若在x=-1处收敛,则此级数在x=2处()
设函数,则f’(x)的零点个数()
求函数在区间(0,2π)内的间断点,并判断其类型。
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则()
设非齐次线性方程缉Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设二维离散型随机变量(X,Y)的联合概率分布如下表所示试求:X与Y的边缘分布律,并判断X与Y是否相互独立;
微分方程满足初始条件y(1)=1的特解是y=_________。
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Φ(x)为极限的是()
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
给出满足下列条件的微分方程:方程为二阶常系数非齐次线性方程,并有两个特解
随机试题
一生写有大量私人新闻信的西塞罗生活在()
试述归因理论在管理中的应用。
抑制性突触后电位是
使用简易呼吸器前,首要的步骤是
下列作用中,属于偶然作用的有()。
下列各项中会影响持有至到期投资摊余成本的有()。
关于重大非常规交易,下列说法中错误的是()。
阅读材料,回答问题。巴基斯坦原首都为卡拉奇,1969年迁到北部城市伊斯兰堡。巴基斯坦北部地区由于迁都的影响加快了区域开发,人口大量迁往北部,北部地区的农业得到了快速的发展。国际货币基金组织指出:巴基斯坦印度河沿岸有庞大的灌溉系统,由于水资源管理不到位,水
A、女的有孩子了B、女的很有福气C、女的变胖了D、女的肉吃得多C对话中“你可真发福了啊”中的“发福”是变胖了的意思,选C。
Willyouplease______itagaininEnglish?
最新回复
(
0
)