首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A-(3/2)E)
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T,a2=(0,-1,1)T是线性方程组Ax=0的两个解. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A-(3/2)E)
admin
2019-08-09
59
问题
设三阶实对称矩阵A的各行元素之和均为3,向量a
1
=(-1,2,-1)
T
,a
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
(Ⅲ)求A及(A-(3/2)E)
6
,其中E为三阶单位矩阵.
选项
答案
(Ⅰ)依题意,因为A=[*] 所以3是矩阵A的一个特征值,a=(1,1,1)
T
是A属于3的特征向量, 又因为Aa
1
=0=0a
1
,Aa
2
=0=0a
2
, 所以a
1
,a
2
是矩阵A属于λ=0的特征向量,所以A的特征值是3、0、0,且λ=0的特征向量为 k
1
(-1,2,-1)
T
+k
2
(0,-1,1)
T
(k
1
,k
2
是不全为0的常数), λ=3的特征向量为k=(1,1,1)
T
(k≠0为常数). (Ⅱ)由于a
1
,a
2
不正交,所以要做Schmidt正交化:β
1
=a
1
=(-1,2,-1)
T
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gcc4777K
0
考研数学一
相关试题推荐
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=_______.
设随机变量X1服从参数为p(0<p<1)的0-1分布,X2服从参数为n,p的二项分布,Y服从参数为2p的泊松分布,已知X1取0的概率是X2取0概率的9倍,X1取1的概率是X2取1概率的3倍,则P{Y=0}=_______,P{Y=1}=_______.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为()T.①求A.②证明A+E是正定矩阵.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,且2S1-S2=1,
设幂级数在(-∞,+∞)内收敛,其和函数s(x)满足s"-2xs’-4s=0,s(0)=0,s’(0)=1。证明:
证明当x∈(—1,1)时,arctanx=恒成立。
求arctanx.
将下列函数展成麦克劳林级数并指出展开式成立的区间:(Ⅰ)ln(1+x+x2);(Ⅱ)arctan
设f(x)=∫0xecostdt,求∫0xf(x)cosxdx
随机试题
根据双膜理论,吸收过程的主要阻力集中在两流体的双膜内。()
报考公务员应当具备( )以上公务员主管部门规定的拟任职位所要求的资格条件。
患者女性,32岁。孕3个月,因四肢关节肿痛3个月,面部红斑1个多月,脱发10天,咳嗽2天就诊。既往身体健康,曾自然流产3次。检查结果为:ESR90mm/h,CRP330mg/L,RF45U/ml,抗dsDNA升高90U/ml,C3和CH50
A.肝内胆管扩张B.胆囊管扩张C.肝内外胆管扩张D.主胰管扩张E.左肝内胆管扩张胆总管下段癌的表现
削痂手术成功的关键是
患者,男性,65岁,陈旧性广泛前壁心肌梗死7年,活动后胸闷、心悸、气短2年,近1周出现夜间阵发性呼吸困难。体检:端坐呼吸,BP160/90mmHg,P120/min。P2亢进,心脏各瓣膜区未闻及杂音;双肺底可闻及细湿哕音,双肺散在哮鸣音;腹平软,肝脾肋
男,48岁。左中指末节红肿7天,疼痛剧烈,掌侧肿胀明显,予切开引流。患指应采用的正确切口是
钩藤横切面的显微特征为( )。
云是天然的生态渔村,冬钓是其特色。()
A、Becauseithadfabulousmansionsinthecity.B、Becausethereweremanywealthymerchantsthere.C、Becauseitislocatedonth
最新回复
(
0
)