首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关列向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关列向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
admin
2021-07-27
102
问题
已知A是n阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关列向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关,证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0.即A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0,其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
,因α
1
,α
2
,…,α
s
线性无关,故对任意不全为零的数k
1
,k
2
,…,k
s
,有ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,而Aξ=0,说明线性方程组Ax=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ghy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设D为单位圆x2+y2≤1,,则()
设α1,α2,…,αs均为n维列向量,A是m×n,矩阵,则下列选项中正确的是()
设n维列向量组α1…,αm(m<n)线性无关,则n维列向量组β1…,βm线性无关的充分必要条件是()
随机试题
Liketheold,______respectedinourcountry.
根据《政府采购法》的适用范围,下列说法中正确的是()。
工伤事故分类的方法比较多,根据《企业职工伤亡事故分类》(GB6441)企业工伤事故分为20个类别,其中包括()。
俱乐部、协会、专业团体等组织的企业文化,基本上属于()。(2013年)
经营者不得搜查消费者的身体及其携带的物品。()
2014年7月间,工商银行A市分行某办事处(相当于县级支行)办公室主任李某与其妻弟密谋后,利用工作上的便利,盗用该银行已于1年前公告作废的旧业务印鉴和银行现行票据格式凭证,签署了金额为人民币100万元的银行承兑汇票一张。该汇票出票人和付款人及承兑人记载为该
________是指“由组织的最高管理者正式发布的该组织总的质量宗旨和方向”。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
皮亚杰在《结构主义》一书中指出,思维结构的要素有()
TheJapanesedollar-buyingmakestraderseagertolet______dollarsinfearofanothergovernmentintervention.
最新回复
(
0
)