首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u)在区间[-1,1]上连续,且∫-11f(u)du=A.求二重积分I=f(x﹢y)dxdg的值.
设f(u)在区间[-1,1]上连续,且∫-11f(u)du=A.求二重积分I=f(x﹢y)dxdg的值.
admin
2018-12-21
53
问题
设f(u)在区间[-1,1]上连续,且∫
-1
1
f(u)du=A.求二重积分I=
f(x﹢y)dxdg的值.
选项
答案
先画出积分区域D={(x,y)||x|﹢|y|≤1),如图(a)所示. I=[*]f(x﹢y)dxdy=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy﹢∫
0
1
dx∫
-1﹢x
1-x
f(x﹢y)≥dy. 对于 I
1
=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy的内层,对y的积分作积分变量代换,令u=x﹢y.当y=-1-x时,u=-1;当y=1﹢x时,u=1﹢2x.于是I
1
=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy=∫
-1
0
dx∫
-1
1﹢2x
f(u)du. 再交换x与u的积分次序(如图(b)),得I
1
=∫
-1
0
du[*]f(u)dx=-∫
-1
0
[*]f(u)du. 类似地,I
2
=∫
0
1
dx∫
-1﹢x
1-x
f(x﹢y)dy[*]∫
0
1
dx∫
-1﹢2x
1
f(u)du=∫
-1
1
du[*]f(u)dx=∫
-1
1
[*]f(u)du. 从而I=I
1
﹢I
2
=∫
-1
1
f(u)du=A. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hAj4777K
0
考研数学二
相关试题推荐
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(1997年)求的值.
(2011年)设平面区域D由直线y=χ,圆χ2+y2=2y及y轴所围成,则二重积分χydσ=_______.
(2007年)已知函数f(u)具有二阶导数,且f′(0)=1,函数y=y(χ)由方程y=χey-1=1所确定.设z=f(lny-sinχ),求
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线y=y(χ)上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=f(χ)为曲边的曲边梯形面积记为S2,并
(2004年)设函数f(χ)在(-∞,+∞)上有定义,在区间[0,2]上,f(χ)=χ(χ2-4),若对任意的χ都满足f(χ)=kf(χ+2),其中k为常数.(Ⅰ)写出f(χ)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(χ)在χ=
随机试题
设=l,其中l为-定值且(l≠0,l≠1),则f(x)在点x=a处
药物作用的强弱取决于:药物作用持续的久暂取决于:
男孩,3岁,自幼人工喂养,食欲极差,有时腹泻。身高85cm,体重7500g,皮肤干燥、苍白,腹部皮下脂肪厚度约0.3cm,脉搏缓慢,心音较低钝。假设此患儿出现哭而少泪。眼球结膜有毕脱斑,则有
锅炉、压力容器、电梯、起重机械等特种设备及其安全附件、安全保护装置的制造、安装、改造单位,应当经国务院()许可,方可从事相应的活动。
按照《公约》的规定,一项发盘的内容必须十分肯定,只有具备()才算十分确定。
根据《个人贷款管理暂行办法》有关贷款资金支付管理的规定,采用贷款人受托支付的,贷款人应()。
近代,地方自治制的警察管理体制的代表国家是()。
设A是n阶非零矩阵,Am=0,下列命题中不一定正确的是
有以下程序:#include<stdio.h>main(){inta=0,b=0,c=0,d=0;printf(’’%d,%d,%d,%d\n’’,a,b,c,d);}程序的运行结果是()。
A、Mark’strainhasleftearlier.B、Mark’strainhasbeendelayed.C、Mark’strainisoftenlate.D、Markislikelytomissthetra
最新回复
(
0
)