首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u)在区间[-1,1]上连续,且∫-11f(u)du=A.求二重积分I=f(x﹢y)dxdg的值.
设f(u)在区间[-1,1]上连续,且∫-11f(u)du=A.求二重积分I=f(x﹢y)dxdg的值.
admin
2018-12-21
86
问题
设f(u)在区间[-1,1]上连续,且∫
-1
1
f(u)du=A.求二重积分I=
f(x﹢y)dxdg的值.
选项
答案
先画出积分区域D={(x,y)||x|﹢|y|≤1),如图(a)所示. I=[*]f(x﹢y)dxdy=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy﹢∫
0
1
dx∫
-1﹢x
1-x
f(x﹢y)≥dy. 对于 I
1
=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy的内层,对y的积分作积分变量代换,令u=x﹢y.当y=-1-x时,u=-1;当y=1﹢x时,u=1﹢2x.于是I
1
=∫
-1
0
dx∫
-1-x
1﹢x
f(x﹢y)dy=∫
-1
0
dx∫
-1
1﹢2x
f(u)du. 再交换x与u的积分次序(如图(b)),得I
1
=∫
-1
0
du[*]f(u)dx=-∫
-1
0
[*]f(u)du. 类似地,I
2
=∫
0
1
dx∫
-1﹢x
1-x
f(x﹢y)dy[*]∫
0
1
dx∫
-1﹢2x
1
f(u)du=∫
-1
1
du[*]f(u)dx=∫
-1
1
[*]f(u)du. 从而I=I
1
﹢I
2
=∫
-1
1
f(u)du=A. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hAj4777K
0
考研数学二
相关试题推荐
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(2007年)设f(χ)是区间[0,]上的单调、可导函数,且满足其中f-1是厂的反函数,求f(χ).
(2014年)一根长为1的细棒位于χ轴的区间[0,1]上,若其线密度ρ(χ)=-χ2+2χ+1,则该细棒的质心坐标=_______.
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2012年)证明:χln(-1<χ<1).
随机试题
十二经脉中,与牙齿有联系的是()(2006年第109题)
产生抗体的细胞是B细胞。
不符合细菌性肝脓肿临床表现的是
A.足少阴肾经B.足厥阴肝经C.足阳明胃D.足太阳膀胱经E.足太阴脾经分布于下肢内侧后缘的是
零级反应有效期计算公式是一级反应速度方程式是
当基金宣传材料中出现()等内容,不符合中国证监会的规定。
长江公司2007年2月10日销售商品应收大海公司的一笔应收账款1000万元,2007年12月31日,该笔应收账款的未来现金流量现值为900万元。在此之前已计提坏账准备60万元,2007年12月31日,该笔应收账款应计提的坏账准备为()万元。
计算机在1997年就击败了国际象棋世界冠军,因为这个游戏能简化成所有可能下法的树形图,只要有足够的运算能力,就能判断出每种下法的后果。在下法变化太多的围棋中,计算机就难以计算了。在涉及语言的应用中,计算机更不够智能,喧嚣一时的语音识别至今也未使人摆脱打字之
请对“犯罪是主客观两方面的结合,因此没有实行行为就不可能构成犯罪”进行辨析。
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
最新回复
(
0
)