首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2019-03-07
53
问题
(07年)设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(I)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)记矩阵A的属于特征值λ
i
的特征向量为α
i
(i=1,2,3),由特征值的定义与性质,有A
k
α
i
=λ
i
k
α
i
(i=1,2,3,k=1,2,…),于是有 Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
一4λ
1
解析
转载请注明原文地址:https://kaotiyun.com/show/hX04777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵。构造(m+n)阶矩阵(Ⅰ)计算HG和GH;(Ⅱ)证明|H|=|Em-AB|=|En-BA|。
已知二次型f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P。
设n元实二次型f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2,其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
已知α1=(1,2,1,1,1)T,α2=(1,-1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。(Ⅰ)求矩阵B使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵
(2013年)设函数f(x)由方程y—x=ex(1-y)确定,则=_____________。
(2014年)设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f′(0)=0,求f(u)的表达式。
(2010年)求幂级数的收敛域及和函数。
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
设二维随机变量(X,Y)的概率密度为f(x,y)=,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(Y|x)。
随机试题
唐朝的张旭和怀素以擅长()而著称。[江西2020]
结构主义语言学
Ingeneral,theancientRomanswereapracticalpeople.Theycaredlessaboutphilosophyandpuremathematicsthan【C1】______The
不属于青光眼视野改变的是
在应用碎石桩加固地基时,下述()意见是错误的。
关于采用第三方保证方式申请商用房贷款的,下列说法错误的是()。
鲁迅在评《三国演义》时说:“至于写人,亦颇有失,以致欲显刘备之长厚而似伪,状诸葛之多智而近妖。”这一评述所蕴含的哲理是()
WhatwasthecourtrulingastoMicrosoft’sbusinesspractice?Whatarethepositiveimpactthatthebreakupcouldhaveonsoft
Therangeinfrequenciesofmusicalsoundsisapproximately20-20,000cyclespersecond(cy/sec),Somepeoplecanhearhigherf
SpeakerA:911EmergencySpeakerB:________
最新回复
(
0
)