首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)内有定义,x0≠0是函数f(x)的极大点,则
设函数f(x)在(一∞,+∞)内有定义,x0≠0是函数f(x)的极大点,则
admin
2019-03-08
59
问题
设函数f(x)在(一∞,+∞)内有定义,x
0
≠0是函数f(x)的极大点,则
选项
A、x
0
必是f(x)的驻点.
B、一 x
0
必是一f(一x)的极小点.
C、一 x
0
必是一 f(x)的极小点.
D、对一切x都有f(x)≤f (x
0
).
答案
B
解析
排除法.f(x)=一|x一x
0
|,显然f(x)在x
0
取极大值,但f’(x
0
)不存在,则x
0
不是f(x)的驻点,从而(A)不对.又一f(x) =|x—x
0
|,显然一 f(x)只有唯一极小值点x=x
0
,又x
0
≠0则x
0
≠一 x
0
,从而一x
0
不是一f(x)的极小值,则(C)也不对.(D)是明显不对,由于极值是一个局部性质,不能保证对一切x有f(x)≤f(x
0
),而只能保证在x
0
某邻域内有f(x)≤f(x
0
),所以应选(B).
直接法.由于f(x)在x
0
取极大值,则
>0,当x
0
一δ<x<x
0
+8时,f(x
0
)≥f(x),前面两不等式两边同乘一1得,即当一x
0
一δ<一x<一x
0
+8时,一 f(x
0
)≤一 f(x).也就是,当一x
0
一δ<一x<一x
0
+δ时,一f[一(一x
0
)]≤一f[一(一x)]即一f(一x)在x
0
取极小值.
转载请注明原文地址:https://kaotiyun.com/show/hpj4777K
0
考研数学二
相关试题推荐
已知ξ是n维列向量,且ξTξ=1,设A=E-ξξT,证明:|A|=0.
求下列隐函数的微分或导数:(Ⅰ)设ysinχ-cos(χ-y)=0,求dy;(Ⅱ)设方程确定y=y(χ),求y′与y〞.
求下列方程的通解:(Ⅰ)y〞-3y′=2-6φ;(Ⅱ)y〞+y=cosχcos2χ.
设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1判断β1,β2,…,βs。线性相关还是线性无关?
已知y1*=χeχ+e2χ,y2*=χeχ+eχ-χ,y3*=χeχ+e2χ-e-χ是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知(χ-1)y〞-χy′+y=0的一个解是y1=χ,又知=eχ-(χ2+χ+1),y*=-χ2-1均是(χ-1)y〞-χy′+y=(χ-1)2的解,则此方程的通解是y=_______.
当x→∞时,下列变量中,哪些是无穷小量?哪些是无穷大量?哪些既非无穷小量也非无穷大量?
随机试题
外敷有发泡作用,皮肤过敏者忌用的药物是
盐酸氯丙嗪“有关物质”项主要是检查
下述哪项不是放置节育环的禁忌证
下列不属于麦克里兰的三重需要理论中的需要的是()。
根据合伙企业法律制度的规定,下列行为中,禁止由有限合伙人实施的是()。(2015年)
人们看到鸟儿的飞翔发明了飞机,看到鱼儿游水发明了潜水艇,这类创造活动的心理影响机制是()
反腐:倡廉
设n为非负整数,则|n一1|+|n—2|+…+|n一100|的最小值是[].
Weshouldalwaysbearinmindthat______decisionsoftenresultinseriousconsequences.
Itis(advise)______foryoutokeepawayfromsaltyfoodbecauseofyourhighbloodpressure.
最新回复
(
0
)