首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,二)设矩阵是满秩的,则直线与直线( ).
(1998年试题,二)设矩阵是满秩的,则直线与直线( ).
admin
2013-12-27
57
问题
(1998年试题,二)设矩阵
是满秩的,则直线
与直线
( ).
选项
A、相交于一点
B、重合
C、平行但不重合
D、异面
答案
A
解析
本题综合考查了线性代数与空间解析几何中的若干知识点,具有较强综合性.首先,记点P
1
为(a
1
,b
1
,c
1
),P
2
为(a
2
,b
2
,c
2
),P
3
为(a
3
,b
3
,c
3
),向量
由已知矩阵满秩,则其行向量组线性无关,因此由解析几何知识可知,三向量
不共面,因此必有三点P
1
,P
2
。P
3
不共线,又由题设,直线
通过点P
3
,以
为方向向量,而直线
通过点P
1
,以
为方向向量,由前述已知,P
1
,P
2
,P
3
不共线,可得出两直线必相交于一点,选A.解析二经初等变换矩阵的秩不变,即由
知后者的秩仍为3,故而两直线的方向向量v
1
=(a
1
一a
2
,b
1
一b
2
,c
1
一c
2
)与v
2
=(a
2
一a
3
,b
2
一b
3
,c
2
一c
1
)线性无关,可排除选项B和C.在这两条直线上各取一点(a
3
,b
3
,c
3
)和(a
1
,b
1
,c
1
),可构造另一个向量v
3
=(a
3
一a
1
,b
3
一b
1
,c
3
一c
1
).若v
1
,v
2
,v
3
共面,则两条直线相交;若v
1
,v
2
,v
3
不共面,则两直线异面,不相交.此时可用混合积
或观察出v
1
+v
2
+v
3
=0知,正确答案为A.
转载请注明原文地址:https://kaotiyun.com/show/iC54777K
0
考研数学一
相关试题推荐
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设f(x)=ln|(x-1)(x-2)(x-3)|,则方程f’(x)=0的根的个数为()
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解.
设η*是非齐次线性方程组Ax=b的一个解,ξ1,ξn-r是对应的齐次线性方程组的一个基础解系,证明:η*,ξ1,…,ξn-r线性无关.
求下列可降阶的高阶微分方程的通解.x2y“=(y‘)2+2xy‘;
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小.
设函数,则曲线y=f(x)与x轴所围成的平面图形的面积为________________
求空间曲线在xOy面上的投影曲线方程.
设y=f(x)在(-1,1)内具有二阶连续导数,且f”(x)≠0,试证:.
z=f(x2-y2,x2+y2),其中f二阶连续可偏导,则=().
随机试题
金属材料的化学性能是指金属材料发生化学反应的能力。()
寒邪食积,大便不通宜用身面浮肿,胸胁积液宜用
评定生产技术方案最基本的标准是()。
受法律保护的物权有( )。
根据公司法律制度的规定,当公司出现特定情形,继续存续会使股东利益受到重大损失,通过其他途径不能解决,持有公司全部股东表决权10%以上的股东提起解散公司诉讼的,人民法院应当受理。下列各项中,属于此类特定情形的是()。
个人取得下列各项所得,必须自行申报纳税的有()。
分析指将整体材料分解成其构成成分并理解组织结构,包括对要素的分析、________的分析、组织原理的分析。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
0,15,26,15,4,()。
文档“北京政府统计工作年报.docx”是一篇从互联网上获取的文字资料,请打开该文档并按下列要求进行排版及保存操作:除封面页和目录页外,在正文页上添加页眉,内容为文档标题“北京市政府信息公开工作年度报告”和页码,要求正文页码从第l页开始,其中奇数页眉居右
最新回复
(
0
)