首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-01-23
125
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
1
),A(α
2
-α
3
)=-(α
2
-α
3
), 得A的另一个特征值为λ
2
=-1.因 为α
1
,α
2
,α
3
线性无关,所以α
1
-α
2
与α
2
-α
3
也线性无关,所以 λ
2
=-1为矩阵A的二重 特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定 可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/iNX4777K
0
考研数学三
相关试题推荐
设arctan
已知A为三阶矩阵,α1=[1,2,3]T,α2=[0,2,1]T,α3=[0,t,1]T为非齐次线性方程组AX=[0,0,1]T的三个解向量,则().
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P(λ<X<λ+a)(a>0)的值().
A是m×n矩阵,线性方程组AX=b有唯一解的充分必要条件是().
设矩阵A与B相似,且(1)求a,b的值;(2)求可逆矩阵P,使P-1AP=B.
函数f(x)在[0,+∞)上可导,且f(0)=1,满足等式f′(x)+f(x)一f(t)dt=0.(1)求导数f′(x);(2)证明:当x≥0时,成立不等式e-x≤f(x)≤1.
线性方程组有公共的非零解,求a,b的值和全部公共解。
随机试题
此患者最可能的诊断是若此患者确定诊断后行开腹术,术中取腹水找到癌细胞,其处理正确的是
生理性贫血最明显的时间为生后
关于贷款的风险分类,下列说法正确的是()。
某银行11月1日存款余额为103万元,11月2日为109万元,11月3日为119万元,则三天平均存款余额为()。
下列有关古今中外文学名家的表述,错误的是()。
危机一旦出现,邀请专业公关机构参与应对,组织公关活动,这本身没有问题。但是危机公关有个前提,就是以诚实、诚恳的态度面对公众,不回避问题和错误,而不是通过拙劣的表演欺骗公众。那些只会忙着“捂盖子”、花钱“删帖子”,而不是致力于解决问题、舒缓公众情绪的做法,无
月球是距离地球最近的天体,但是如何从地球飞到月球并不是一个简单的问题,虽然早在30多年前阿波罗航天员就已经登上月球,但是今天人类重返月球不能简单的重复阿波罗登月的方式。因为今天人类重返月球比当年阿波罗登月要复杂和困难,不仅飞往月球的人数比阿波罗飞行要多得多
根据我国《宪法》的规定,中华人民共和国主席、副主席都缺位时,由全国人民代表大会补选。在补选以前,应由()暂时代理主席职位。
在VisualFoxPro中,表示2012年9月10日10点整的日期时间常量是
Mostpeoplehavecometorealizethatitisabouttimethegovernment______furthermeasurestocontrolthepopulation.
最新回复
(
0
)