首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=相似,求x,y;并求—个正交矩阵P,使P-1AP=A.
设矩阵A=相似,求x,y;并求—个正交矩阵P,使P-1AP=A.
admin
2020-11-13
84
问题
设矩阵A=
相似,求x,y;并求—个正交矩阵P,使P
-1
AP=A.
选项
答案
(1)因为A与A相似,得|A|=|A|且A的全部特征值的和等于主对角线元素和且与A的全部特征值的和(主对角线元素和)相等, 又因为|A|=[*]=一15x一40,|A|=一20y, 所以[*] (2)由(1)知A=[*] 因为A~A,因此A的特征值为λ
1
=λ
3
=5,λ
2
=一4. 当λ
1
=λ
3
=5时,解线性方程(5E—A)x=0. 5E—A=[*],解得基础解系[*] 取k
1
=0,k
2
=1和k
2
=0,k
1
=1两组数,得两线性无关的特征向量α
1
=[*] 将α
1
,α
3
正交化得屈β
1
=α
1
,β
3
=α
3
—[*] 当λ
3
=一4时,解线性方程(一4E—A)x=0,一4E—A=[*],解得基础解系为α
2
=(2,1,2)
T
. 最后将β
1
,β
2
,β
3
单位化,即得γ
1
=[*] 令P=(γ
1
,γ
2
,γ
3
)=[*],则P
-1
AP=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/ixx4777K
0
考研数学三
相关试题推荐
设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1.讨论f’(x)在(-∞,+∞)内的连续性.
[2005年]设其中D={(x,y)|x2+y2≤1}则().
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明:存在η∈(a,b),使得f(η)=g(η);
[2010年](I)比较与的大小,并说明理由;(Ⅱ)设求极限
[2012年]证明
[2015年](I)设函数u(x),u(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
[2009年]设X1,X2,…,Xn是来自二项分布总体B(n,P)的简单随机样本,[*]和S2分别为样本均值和样本方差.记统计量[*]则E(T)=___________.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是________。
随机试题
强学会
男,28岁,突然发病,除显著贫血貌外,无特殊阳性体征,实验室检查:外周血象示全血细胞减少,网织红细胞明显减少,骨髓象示增生低下,最有可能的诊断是
某宾馆内服务楼梯踏步的最小宽度b、最大高度h应为()。
在图4—74中,将圆环的惯性力系向O点简化,其主矢F1和主矩mIO的数值为()。
下列属于综合评估法的优点是()。
下列车船应计算缴纳车船税的是()。
求助者主诉,他经常看见墙上出现不同色彩,问之别人,别人并未看见,这一现象称为()。
以下历史事件发生的先后顺序不正确的是()。
下列属于霍奇金病Ⅲ期的是
Researchonfriendshiphasestablishedanumberoffacts,someinteresting,someevenuseful.Didyouknowthattheaveragestud
最新回复
(
0
)