首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
admin
2021-01-19
36
问题
(2010年)设y
1
,y
2
是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是该方程对应的齐次方程的解,则 【 】
选项
A、
B、
C、
D、
答案
A
解析
由于λy
1
+μy
2
为方程y′+p(χ)y=q(χ)的解,则
(λy
1
+μy
2
)′+p(χ)(λy
1
+μy
2
)=g(χ)
即λ(y′
1
+p(χ)y
1
)+μ(y′
2
+p(χ)y
2
)=q(χ)
λq(χ)+μ(χ)=q(χ)
λ+μ=1 (1)
由于λy
1
-μy
2
为方程y′+p(χ)y=0的解,则
(λy
1
-μy
2
)′+p(χ)(λy
1
-μy
2
)=0
λ(y′
1
+p(χ)y
1
)-μ(y′
2
+p(χ)y
2
)=0
λq(χ)-μq(χ)=0
λ-μ=0 (2)
由(1)式和(2)式解得λ=μ=
转载请注明原文地址:https://kaotiyun.com/show/jC84777K
0
考研数学二
相关试题推荐
证明:方程xa=lnx(a<0)在(0,+∞)上有且仅有一个实根.
设向量组α1,α2……αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α2,β+α2,…,β+αi线性无关.
设曲线y=χn在点(1,1)处的切线交χ轴于点(ξn,0),求
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α3+α4,β3=α2-α4,β4=α3+α4,β5=α2+α3.(1)求r(β1,β2,β3,β4,β5);(2)求β1,β2,β3,β4,β5的一个最大无关组
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
求微分方程y"+2y’一3y=e-3x的通解.
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
(1991年)求
随机试题
下列反应中既表现了浓硫酸的酸性,又表现了浓硫酸的氧化性的是()。
《张中丞传后叙》中,写南霁云抽刀断指时,“一座大惊,皆感激为云泣下”,对刻画南霁云形象来说,这种表现手法是()
A、分泌性腹泻B、渗出性腹泻C、吸收不良性腹泻D、动力性腹泻E、渗透性腹泻;下述疾病分别属于何种腹泻霍乱
A.桂枝茯苓丸B.膈下逐瘀汤C.参茜固经冲剂D.逐瘀止血汤E.清海丸
公民、法人或者其他组织申请行政复议的条件包括()。
为向A公司支付购买机器设备的货款,B公司向自己开户的C银行申请开具银行承兑汇票。C银行审核同意后,B公司依约存入C银行300万元保证金,并签发了以自己为出票人、A公司为收款人、C银行为承兑人、金额为1000万元、见票后3个月付款的银行承兑汇票,C银行在该汇
平行登记法下总账与其所属明细账之间在数量上的勾稽关系是()。
小夜曲:
一项研究结果_________了在梦中各种感官体验出现的频率,结果显示视觉体验居第一,听觉体验居第二,而触觉、嗅觉和味觉体验的出现频率相当低。视觉和听觉处理与大脑的关系要密切得多,多达三分之二的大脑皮层以某种方式参与视觉。因此,视觉如此频繁地在梦中出现__
ForwhomdidPresidentObamadelivertheaddress?
最新回复
(
0
)