首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则 【 】
admin
2021-01-19
67
问题
(2010年)设y
1
,y
2
是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
-μy
2
是该方程对应的齐次方程的解,则 【 】
选项
A、
B、
C、
D、
答案
A
解析
由于λy
1
+μy
2
为方程y′+p(χ)y=q(χ)的解,则
(λy
1
+μy
2
)′+p(χ)(λy
1
+μy
2
)=g(χ)
即λ(y′
1
+p(χ)y
1
)+μ(y′
2
+p(χ)y
2
)=q(χ)
λq(χ)+μ(χ)=q(χ)
λ+μ=1 (1)
由于λy
1
-μy
2
为方程y′+p(χ)y=0的解,则
(λy
1
-μy
2
)′+p(χ)(λy
1
-μy
2
)=0
λ(y′
1
+p(χ)y
1
)-μ(y′
2
+p(χ)y
2
)=0
λq(χ)-μq(χ)=0
λ-μ=0 (2)
由(1)式和(2)式解得λ=μ=
转载请注明原文地址:https://kaotiyun.com/show/jC84777K
0
考研数学二
相关试题推荐
记平面区域D={(x,y)||x|+|y|≤1},计算如下二重积分:常数λ>0.
设已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
设(Ⅰ)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.求曲线y=f(x2)∫0xf(-t2)dt的拐点.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.求f(x)的表达式;
一生产线生产的产品成箱进行包装,每箱重量是随机的,设每箱平均重50kg,标准差5kg。现用最大载重量为5吨的汽车装运,试问每辆车最多可装多少箱,才能保证不超载的概率大于0.977?
设f(u,v)具有连续偏导数,且满足f’(u,v)+f’(u,v)=uv.求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
(1994年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+∫bχdt=0在开区间(a,b)内的根有
随机试题
关于心动周期的论述,以下哪项是错误的
下列关于腹泻患儿的护理措施,正确的是
根据《岩土工程勘察规范》(GB50021—2001)(2009年版),利用遥感影像资料解译进行工程地质测绘时,属于现场检验的野外工作的选项有()。
在下列情况下,承包人可以索赔利润的有()。
我国首个中外合资证券公司是()。
在公司当年的税后利润分配顺序中,以下处于最前位置的是()。
在下面关于层次模型的描叙中,______是不正确的。
ANewwebsitefromtheU.S.DepartmentofAgriculture(USDA)showsthat10percentofthecountryisnowa"fooddesert."TheFood
InconsideringhowtheAmericanfamilyischanging,thestartingpointisthetraditionalfamily,aformwhichhasdevelopedove
【B1】【B20】
最新回复
(
0
)