首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
admin
2019-06-04
22
问题
已知随机变量X
1
与X
2
相互独立且分别服从参数为λ
2
,λ
2
的泊松分布,已知P{X
1
﹢X
2
>0}﹦1-e
-2
,则E(X
1
﹢E
2
)
2
﹦______。
选项
答案
6
解析
已知X
i
~P(λ
i
)且X
2
与X
2
相互独立,因此E(X
i
)﹦D(x
i
)﹦λ
i
(i﹦1,2),
E(X
1
﹢X
2
)
2
2﹦E(X
1
2
﹢2X
1
X
2
﹢X
2
2
)
﹦E(X
1
2
)﹢2E(X
1
)E(X
2
)﹢E(X
2
2
)
﹦λ
1
﹢λ
1
2
﹢2λ
1
λ
2
﹢λ
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
。
下面计算λ
1
﹢λ
2
的值,由于
P{X
1
﹢X
2
>0}﹦1-P{X
1
﹢X
2
≤0}﹦1-P{X
1
﹢X
2
﹦0}
﹦1-P{X
1
﹦0,X
2
﹦0}﹦1-P{X
1
﹦0}P{X
2
﹦0}
﹦1-e
-λ
1
?e
-λ
2
﹦1-e
-(λ
1
﹢λ
2
)
﹦1-e
-2
,
所以λ
1
﹢λ
2
﹦2。故有E(X
1
﹢X
2
)
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
﹦6。
本题考查相互独立的随机变量数学期望的性质。首先利用泊松分布得出X
1
与X
2
的期望和方差,并将E(X
1
﹢X
2
)
2
分解,然后根据P{X
1
﹢X
2
>0}﹦1-e
-2
推出λ
1
﹢λ
2
的值,代入E(X
1
﹢X
2
)
2
的表达式得出结果。
转载请注明原文地址:https://kaotiyun.com/show/jQc4777K
0
考研数学一
相关试题推荐
已知R3的两个基分别为求由基(Ⅰ)到基(Ⅱ)的过渡矩阵C.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
设实方阵A=(aij)1×4满足:(1)aij=Aij(i,j=1,2.3,4.其中Aij为aij的代数余子式):(2)a11≠0.求|A|.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T、是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设λ1,λ2为n阶实对称矩阵A的两个不同特征值,X1为对应于λ1的一个单位特征向量.则矩阵B=A—λ1X1X1T有两个特征值为___________.
设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,写出f的矩阵A,求出A的特征值,并指出曲面f(x1,x2,x3)=1的名称.
设函数f(x)连续,则F’(x)=
为了研究施肥和不施肥对某种农作物产量的影响独立地,选了13个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
(1)设函数f(x)具有一阶连续导数,且f(1)=1,D为不包含原点的单连通区域,在D内曲线积分与路径无关,求f(y);(2)在(1)的条件下,求a>0,且取逆时针方向.
在过点0(0,0)和A(n,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3)dx+(2x+y)dy的值最小.
随机试题
A.病例对照研究B.普查C.筛检D.队列研究E.抽样调查
地基承载力原位测试要求在土体原有位置上,在保持土的天然结构、天然含水量及天然应力状态下的测定。()
下列关于水泥混凝土路面配合比参数计算取值的选项中,说法错误的是()。
谢某于2008年初购买了某上市公司的股票,2008年10月16日取得该上市公司分配的股息6000元,该股息所得应缴纳的个人所得税为( )元。
社区里组织青少年成立时事小组,定期出版社区黑板报,这属于()。
最小的质数是________.
全班有48人,喜欢打乒乓球的30人,喜欢打羽毛球的25人,既喜欢打乒乓球又喜欢打羽毛球的至少有多少人?()
下列说法错误的是()。
Irememberlotsofthings.
Wheredoesthisconversationprobablytakeplace?
最新回复
(
0
)