首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
admin
2019-06-04
20
问题
已知随机变量X
1
与X
2
相互独立且分别服从参数为λ
2
,λ
2
的泊松分布,已知P{X
1
﹢X
2
>0}﹦1-e
-2
,则E(X
1
﹢E
2
)
2
﹦______。
选项
答案
6
解析
已知X
i
~P(λ
i
)且X
2
与X
2
相互独立,因此E(X
i
)﹦D(x
i
)﹦λ
i
(i﹦1,2),
E(X
1
﹢X
2
)
2
2﹦E(X
1
2
﹢2X
1
X
2
﹢X
2
2
)
﹦E(X
1
2
)﹢2E(X
1
)E(X
2
)﹢E(X
2
2
)
﹦λ
1
﹢λ
1
2
﹢2λ
1
λ
2
﹢λ
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
。
下面计算λ
1
﹢λ
2
的值,由于
P{X
1
﹢X
2
>0}﹦1-P{X
1
﹢X
2
≤0}﹦1-P{X
1
﹢X
2
﹦0}
﹦1-P{X
1
﹦0,X
2
﹦0}﹦1-P{X
1
﹦0}P{X
2
﹦0}
﹦1-e
-λ
1
?e
-λ
2
﹦1-e
-(λ
1
﹢λ
2
)
﹦1-e
-2
,
所以λ
1
﹢λ
2
﹦2。故有E(X
1
﹢X
2
)
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
﹦6。
本题考查相互独立的随机变量数学期望的性质。首先利用泊松分布得出X
1
与X
2
的期望和方差,并将E(X
1
﹢X
2
)
2
分解,然后根据P{X
1
﹢X
2
>0}﹦1-e
-2
推出λ
1
﹢λ
2
的值,代入E(X
1
﹢X
2
)
2
的表达式得出结果。
转载请注明原文地址:https://kaotiyun.com/show/jQc4777K
0
考研数学一
相关试题推荐
设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则
设矩阵A=,α1,α2,α3为线性无关的三维列向量组。则向量组Aα1,Aα2,Aα3.的秩为_________.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关。且满足A3x=3Ax一2A2x.记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;
设B为3阶非零矩阵,且AB=O,则t=________.
(1)设函数f(x)具有一阶连续导数,且f(1)=1,D为不包含原点的单连通区域,在D内曲线积分与路径无关,求f(y);(2)在(1)的条件下,求a>0,且取逆时针方向.
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2,并且f(x)在x=0处连续.证明:函数f(x)在任意点x0处连续.
设S为平面x-y+z=1介于三坐标平面间的有限部分,法向量与z轴交角为锐角,f(x,y,z)连续,计算I=[f(x,y,z)+x]dydz+[2f(x,y,z)+y]dzdx+[f(x,y,z)+x]dxdy.
如图1.3一1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
将极坐标变换后的二重积分f(rcosθ,rsinθ)rdrdθ的如下累次积分交换积分顺序:I=dθ∫02acosθF(r,θ)dr,其中F(r,θ)=f(rcosθ,rsinθ)r.
随机试题
下列关于企业会计科目选择和使用的表述中,不正确的是()
短暂性脑缺血发作(TIA)神经功能缺失持续时间不足
屠宰污水检测,分别在两个溶解氧瓶中注满水样,立即测定其中一瓶的溶解氧(C1),将另一瓶水样置于20℃温箱中培养5天后,测定其溶解氧(C2),C1减C2的差值为
以下关于《工业炉窑大气污染物排放标准》(GB9078—1996)的说法错误的是( )。
下列()不属于措施费。
下列不属于保监会对保险代理机构进行现场检查的内容的是( )。
由于纳税人、扣缴义务人自己失误所致,例如计算错误等,责任完全在于纳税人、扣缴义务人一方,而未缴或少缴税款的,税务机关应当()税款。
根据以下资料。回答下列问题。2012年末,安徽省户籍人口6902万人,比上年增加26万人。年末常住人口5988万人,比上年增加20万人,均保持平稳发展态势。2012年,全省常住人口全年出生人口77.7万人,死亡人口36.7万人。2012
一分耕耘一分收获,不愿付出辛勤的劳动,机遇即使掉到你的手上,也接不住。人生充满机遇,然而机遇对每个人来说都是公平的,只是有些人抓住了,有些人抓不住;有些人发现了,有些人却茫然不知;有些人在不断创造机会,而有些人则在苦等机会。人的一生就有大大小小的多种机遇,
毕生发展的观点逐渐为人们所接受,发展心理学概念开始被确认并取代了儿童心理学在心理学中的地位,使儿童心理学成为发展心理学的组成部分,是()
最新回复
(
0
)