首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
已知随机变量X1与X2相互独立且分别服从参数为λ2,λ2的泊松分布,已知P{X1﹢X2>0}﹦1-e-2,则E(X1﹢E2)2﹦______。
admin
2019-06-04
29
问题
已知随机变量X
1
与X
2
相互独立且分别服从参数为λ
2
,λ
2
的泊松分布,已知P{X
1
﹢X
2
>0}﹦1-e
-2
,则E(X
1
﹢E
2
)
2
﹦______。
选项
答案
6
解析
已知X
i
~P(λ
i
)且X
2
与X
2
相互独立,因此E(X
i
)﹦D(x
i
)﹦λ
i
(i﹦1,2),
E(X
1
﹢X
2
)
2
2﹦E(X
1
2
﹢2X
1
X
2
﹢X
2
2
)
﹦E(X
1
2
)﹢2E(X
1
)E(X
2
)﹢E(X
2
2
)
﹦λ
1
﹢λ
1
2
﹢2λ
1
λ
2
﹢λ
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
。
下面计算λ
1
﹢λ
2
的值,由于
P{X
1
﹢X
2
>0}﹦1-P{X
1
﹢X
2
≤0}﹦1-P{X
1
﹢X
2
﹦0}
﹦1-P{X
1
﹦0,X
2
﹦0}﹦1-P{X
1
﹦0}P{X
2
﹦0}
﹦1-e
-λ
1
?e
-λ
2
﹦1-e
-(λ
1
﹢λ
2
)
﹦1-e
-2
,
所以λ
1
﹢λ
2
﹦2。故有E(X
1
﹢X
2
)
2
﹦λ
1
﹢λ
2
﹢(λ
1
﹢λ
2
)
2
﹦6。
本题考查相互独立的随机变量数学期望的性质。首先利用泊松分布得出X
1
与X
2
的期望和方差,并将E(X
1
﹢X
2
)
2
分解,然后根据P{X
1
﹢X
2
>0}﹦1-e
-2
推出λ
1
﹢λ
2
的值,代入E(X
1
﹢X
2
)
2
的表达式得出结果。
转载请注明原文地址:https://kaotiyun.com/show/jQc4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs—1一口、,βs=αs+α1,讨论向量组β1,β2,…,βs的线性相关性.
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关。且满足A3x=3Ax一2A2x.计算行列式|A+E|.
设A是n阶矩阵,满足AAT=I(I是n阶单位阵,AT是A的转置矩阵),|A|<0,求|A+I|.
方程f(x)==0的全部根是________.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=_______________.
已知线段AB=4,CD=1,现分别独立地在AB上任取点A1,住CD上任取点C1.作一个以AA1为底、CC1为高的三角形,设此三角形的而积为S,求P(S<1)和D(S).
在长为a的线段AB上独立、随机地取两点C,D,试求CD的平均长度.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f’’(ξ)=0.
求的反函数的导数.
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
随机试题
A.淋巴结结构破坏,大量单一肿瘤性细胞增生B.淋巴结结构破坏,多种炎细胞及R-S细胞增生C.淋巴结内瘤细胞排列成滤泡结构D.淋巴结结构破坏,大量原始粒细胞浸润滤泡性非霍奇金淋巴瘤
A.Ⅰ/甲B.Ⅰ/乙C.Ⅱ/甲D.Ⅱ/乙E.Ⅲ/丙阑尾穿孔术后切口化脓,应记录为
伴有左心室肥厚的高血压患者降压应首选
以下对城市排水体制的选择不合理的是()。
概算定额手册的内容包括()。
借贷记账法具有以下优点( )。
已知数列{an}的前n项和Sn=n2+kn(k∈N*),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列{}的前n项和Tn。
(1)用热水洗去木屑(2)将纸从印版上揭起并阴干(3)把纸覆盖在版面上,用刷子轻轻刷纸(4)用刷子蘸墨汁均匀刷于版面上(5)将有字的一面贴在木板上,由刻字工逐字雕刻(6)将书稿写于纸上
Ononeoftheshelvesofanolddresser,incompanywitholdanddustysauce-boats,jugs,dishesandplates,andpaidbills,res
DearManager,Iamwritingtoyoutocomplainabouttheserviceinyourhotel.Ihadaterriblestayinroom2532ofOrange
最新回复
(
0
)