首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2018-06-27
29
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0.考察F(x)=[f(t)dt]
2
-∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
π
f(t)dt]
2
-∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt-f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt-f
2
(x)同号.再考察 g’(x)=2f(x)[1-f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0. 即结论成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/jZk4777K
0
考研数学二
相关试题推荐
设则f(x)=_________.
设积分区域D:{(x,y)|0≤x≤1,0≤y≤1},求
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
(I)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离平方,求该圆盘的质量m.(Ⅱ)将以曲线及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
设线性齐次方程组Ax=0.为在线性方程组(*)的基础上增添一个方程2x1+ax2一4x3+bx4=0,得线性齐次方程组Bx=0为问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设f(x,y)=|x—y|φ(x,y),其中φ(x,y)在点(0,0)的某邻域内连续,则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
设其中f,g,φ在其定义域内均可微,求.
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
(2000年试题,一)设E为四阶单位矩阵,且B=(E+A)-1(E—A),则(E+B)-1=___________.
随机试题
下列淋巴瘤中,预后最好的是
取得土地使用权的代价,在取得土地使用权时即要付出的是()。
衡量因素的同一水平(同一个总体)下样本数据的误差,称为()误差。
三合土垫层是用下列哪几种材料拌和铺设?[1995年第021题]
因紧急情况需暂停施工,且监理人未及时下达暂停施工指示的,承包人可先暂停施工,并及时通知监理人。监理人应在接到通知后()小时内发出指示,逾期未发出指示,视为同意承包人暂停施工。
公告在撰写时要求行文郑重、用语规范。下列说法不正确的是()。
“曲高和寡”出自战国宋玉的《对楚王问》,这一成语的本义是曲调高深,能跟着唱的人就少,多指知音难得。引申义是言论或作品不通俗,能了解的人很少。如果从经济学的角度来理解,它所体现出的道理是()。
根据《行政诉讼法》,下列说法错误的是()。
尽管通过一种新的计算机辅助设计过程生产出来的定制的修复用的骨替代物的价格是普通替代物的两倍多,定制的替代物仍然是节约成本的。定制的替代物不仅可以减少手术和术后恢复的时间,而且它更耐用,因而减少再次住院的需要。为评论以上提出的论述,必须研究以下哪一项
TodayonlyonepersoninfiveintheUnitedStatesliveswithin50milesofhisbirthplace.Sincethecountrywasfirstsettled,
最新回复
(
0
)