首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
admin
2020-12-17
74
问题
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0.
证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b);
(Ⅱ)存在ξ∈(a,b),使
.
选项
答案
(Ⅰ)反证法. 若不然,则在(a,b)内至少存在一点c,使g(c)=0,于是由已知条件知,g(χ)在[a,c]与[c,b]上满足罗尔定理条件.分别应用罗尔定理,得ξ
1
∈(a,c),ξ
2
∈(c,b),使 g′(ξ
1
)=0,g′(ξ
2
)=0, 于是g′(χ)在[ξ
1
,ξ
2
]上满足罗尔定理条件,进一步应用罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使g〞(η)=0,这与条件g〞(χ)≠0,χ∈(a,b)矛盾. 故g(χ)≠0,χ∈(a,b). (Ⅱ)令F(χ)=f(χ)g′(χ)-f(χ)g(χ),则F(χ)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,满足罗尔定理条件.对F(χ)应用罗尔定理,于是存在ξ∈(a,b),使F′(ξ)=0,即 F′(ξ)=[f′(χ)g′(χ)+f(χ)g〞(χ)-f′(χ)g′(χ)-f〞(χ)g(χ)]|
χ=ξ
=f(ξ)g〞(ξ)-f〞(ξ)g(ξ)=0, 由于g(ξ)≠0,g〞(ξ)≠0,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/k3x4777K
0
考研数学三
相关试题推荐
[2009年]设曲线y=f(x),其中f(x)是可导函数,且f(x)>0,已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍.求该曲线方程.
[2005年]微分方程xy’+y=0满足初始条件y(1)=2的特解为___________.
[2008年]设z=z(x,y)是由x2+y2-z=φ(x+y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.求:dz;
[2006年]设函数f(u)可微,且f’(0)=1/2,则z=f(4x2-y2)在点(1,2)处的全微分dz|1,2=___________.
[2006年]求幂级数的收敛域及和函数S(x).
设f(x)有二阶连续导数,且f’(0)=0,.则()
二阶常系数非齐次线性微分方程y’’-2y’-3y=(2x+1)e-x的特解形式为().
设f(x)在x=0处二阶可导,f(0)=0且=2,则().
已知随机变量X1与X2相互独立且有相同的分布:P{Xi=一1}=P{Xi=1}=(i=1,2),则()
设3阶行列式D3的第2行元素分别为1、-2、3,对应的代数余子式分别为-3、2、1,则D3=_______
随机试题
_______是人的全面发展的物质基础,_______是人的全面发展的基本条件。
“吐下之余,定无完气”的理论根据是
冠心病心绞痛气阴两虚证的治法是
此时辨证为何型呃逆()此病例若出现心烦口苦,大便秘结,舌红,脉弦数者,用五磨饮子加用何药()
结构实体混凝土强度通常()标准养护条件下的混凝土强度。
甲和乙先后发明了同一种保暖型外墙用建筑材料,并在同一天分别向专利管理机关中请专利。根据我国《专利法》的规定,由于他们是同一天申请的,所以只能授予他们分别拥有专利权。()
以下完全在境外消费的项目中,适用增值税零税率的有()。
注册会计师负责审计上市公司甲公司20×8年度财务报表。在确定重要性时,注册会计师遇到下列事项,请代为作出正确的专业判断。随着审计过程的推进,注册会计师通常认为修改重要性水平的合理理由是()。
某年,电信公司投入了巨资改善网络通讯质量和网络覆盖区,结果当年用户增加了20%,但是利润却下降了10%。最可能的原因是()。
利用对话框提示用户输入参数的查询过程称为()。
最新回复
(
0
)