首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0. 证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b); (Ⅱ)存在ξ∈(a,b),使.
admin
2020-12-17
115
问题
设f(χ),g(χ)在[a,b]上二阶可导,g〞(χ)≠0,f(a)=f(b)=g(a)=g(b)=0.
证明:(Ⅰ)g(χ)≠0,任意χ∈(a,b);
(Ⅱ)存在ξ∈(a,b),使
.
选项
答案
(Ⅰ)反证法. 若不然,则在(a,b)内至少存在一点c,使g(c)=0,于是由已知条件知,g(χ)在[a,c]与[c,b]上满足罗尔定理条件.分别应用罗尔定理,得ξ
1
∈(a,c),ξ
2
∈(c,b),使 g′(ξ
1
)=0,g′(ξ
2
)=0, 于是g′(χ)在[ξ
1
,ξ
2
]上满足罗尔定理条件,进一步应用罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使g〞(η)=0,这与条件g〞(χ)≠0,χ∈(a,b)矛盾. 故g(χ)≠0,χ∈(a,b). (Ⅱ)令F(χ)=f(χ)g′(χ)-f(χ)g(χ),则F(χ)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,满足罗尔定理条件.对F(χ)应用罗尔定理,于是存在ξ∈(a,b),使F′(ξ)=0,即 F′(ξ)=[f′(χ)g′(χ)+f(χ)g〞(χ)-f′(χ)g′(χ)-f〞(χ)g(χ)]|
χ=ξ
=f(ξ)g〞(ξ)-f〞(ξ)g(ξ)=0, 由于g(ξ)≠0,g〞(ξ)≠0,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/k3x4777K
0
考研数学三
相关试题推荐
[2008年]设函数f(x)连续,若其中区域Duv为图1.6.2.1中阴影部分,则
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
[2016年]求幂级数的收敛域及和函数.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设函数f(x),g(x)具有二阶导数,且g”(x)<0.若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
曲线当x→-∞时,它有斜渐近线()
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件则().
设随机变量X服从参数为1的指数分布。记Y=max{X,1},则E(Y)=()
已知随机变量X1与X2相互独立且有相同的分布:P{Xi=一1}=P{Xi=1}=(i=1,2),则()
设函数f(x)在(-∞,+∞)内二阶可导,且f(x)和fˊˊ(x)在(-∞,+∞)内有界.证明:fˊ(x)在(-∞,+∞)内有界.
随机试题
质量等级战略主要有()
工作分析的程序。
设D由y2=x,y=x围成,则xydxdy=()
以下关于细胞膜离子通道的叙述,正确的是
关于念珠菌性阴道炎,下列说法错误的是()。
洛美沙星结构式如下:对该药进行人体生物利用度研究,采用静脉注射与口服给药方式,给药剂量均为400mg,静脉给药和口服给药的AUC分别为40μg/ml.h和36μg/ml.h。基于上述信息分析,洛美沙星生物利用度计算正确的是
记帐人员与会计事项的审批人员、经办人员、财物保管人员的职责权限应当明确,并相互分离、相互制约。()
下列关于贝塔值和标准差的表述中,正确的有()。
在保守型筹资政策下,下列结论成立的是()。
文具行业以其覆盖面广、技术含量低、进入门槛极低、投资少见效快、市场需求大等因素吸引许多中小企业纷纷投资,但有些企业为了单纯扩大_________,采取降价策略,屡屡造成国际贸易_________,这些问题亟须引起有关部门重视并加以调控。填入划横线
最新回复
(
0
)