首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 A=[β1,β2,β3,β4,β5]= 则 ( )
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 A=[β1,β2,β3,β4,β5]= 则 ( )
admin
2018-09-25
53
问题
齐次线性方程组的系数矩阵A
4×5
=[β
1
,β
2
,β
3
,β
4
,β
5
]经过初等行变换化成阶梯形矩阵为
A=[β
1
,β
2
,β
3
,β
4
,β
5
]=
则 ( )
选项
A、β
1
不能由β
3
,β
4
,β
5
线性表出
B、β
2
不能由β
1
,β
3
,β
5
线性表出
C、β
3
不能由β
1
,β
2
,β
5
线性表出
D、β
4
不能由β
1
,β
2
,β
3
线性表出
答案
D
解析
β
i
能否由其他向量线性表出,只需将β
i
视为非齐次方程的右端自由项(无论它原来在什么位置),有关向量留在左端,去除无关向量,看该非齐次方程是否有解即可.由阶梯形矩阵知,β
4
不能由β
1
,β
2
,β
3
线性表出.
转载请注明原文地址:https://kaotiyun.com/show/kYg4777K
0
考研数学一
相关试题推荐
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C;又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=___________.
已知a23a31aija64a56a15是6阶行列式中的一项,试确定i,j的值及此项所带符号.
设f(x)在x=0的某邻域内有连续的一阶导数,且f′(0)=0,f″(0)存在.求证:
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
设随机变量X的概率密度为f(x)=4594试求:(Ⅰ)常数C;(Ⅱ)概率P{<X<1);(Ⅲ)X的分布函数.
设F(t)=f(x2+y2+z2)dv,其中f为连续函数,f(0)=0,f′(0)=1,则=().
已知X~N(3,4),Y服从指数分布fY(y)=X,Y的相关系数ρ=-1/4,Z=3X一4Y,则Z的方差D(Z)=___________.
求幂级数的收敛区间与和函数f(x)。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
随机试题
组织整体对风险的应变能力可分解为()
决策过程中,人们对待风险的态度主要有()。
Themanagerneedsanassistantthathecan______totakecareofproblemsinhisabsence.
感冒的治疗.可分别采用辛温解表或辛凉解表.此属于
只有与HBV共生才能复制的病毒是()。
在桥梁整孔吊装或分段吊装逐孔施工中,为了加强桥梁的横向刚度,常采用梁间翼缘板有()m宽的现浇接头。
补充登记法适用于记账凭证中所记金额小于应记金额,并据以登记入账的情况。()
中国证监会对全国的证券发行、证券交易、中介机构的行为等依法实施全面监管,并负责组织各证券公司进行培训。()
NevermindthetsunamidevastationinAsialastDecember,therecentearthquakeinKashmirorthesuicidebombingsthisyearin
Marriagemaybeaboutlove,butdivorceisabusiness.Forglobalcouples—bornindifferentcountries,marriedinathird,noww
最新回复
(
0
)