首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2019-08-21
40
问题
下列命题正确的是( ).
选项
A、f(x)在点x
0
连续的充要条件是f(x)在点x
0
可导
B、若fˊ(x)=x
2
(偶函数),则f(x)必是奇函数
C、若
(常数),则fˊ(0)=a
D、若
,则fˊ(0)=-1
答案
D
解析
由连续、可导及奇偶性定义便可得结论.
解:由导数定义知
故应选(D).
错例分析:有的学生选择(B)选项,这是不对的.如取fˊ(x)=1+cos x.则
令C=1,则f(x)=x+sin x+1,显然fˊ(x)=1+cos x是偶函数,但f(x)=x+sin x+1不是奇函数.还有的同学选(A)项,也是错误的,如取f(x)=|x|,则f(x)在x
0
=0处连续.但由于fˊ
-
(0)=-1≠1=fˊ
+
(0),所以fˊ(0)不存在,即f(x)在x
0
=0处不可导.选择(C)项同样是错误的,因为不知道f(0)的值就不可能求出fˊ(0).
转载请注明原文地址:https://kaotiyun.com/show/lKN4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程sinx+2y—z=ez所确定,则
已知问a为何值时,向量组α1,α2,α3,α4线性相关;
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0)且f(a)=0,证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
求曲线的斜渐近线.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设向量组线性相关,但任意两个向量线性无关.求参数t.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设将上述关系式表示成矩阵形式;
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系。设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用。设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
随机试题
金属材料的化学性能是指金属材料发生化学反应的能力。()
寒邪食积,大便不通宜用身面浮肿,胸胁积液宜用
评定生产技术方案最基本的标准是()。
受法律保护的物权有( )。
根据公司法律制度的规定,当公司出现特定情形,继续存续会使股东利益受到重大损失,通过其他途径不能解决,持有公司全部股东表决权10%以上的股东提起解散公司诉讼的,人民法院应当受理。下列各项中,属于此类特定情形的是()。
个人取得下列各项所得,必须自行申报纳税的有()。
分析指将整体材料分解成其构成成分并理解组织结构,包括对要素的分析、________的分析、组织原理的分析。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
0,15,26,15,4,()。
文档“北京政府统计工作年报.docx”是一篇从互联网上获取的文字资料,请打开该文档并按下列要求进行排版及保存操作:除封面页和目录页外,在正文页上添加页眉,内容为文档标题“北京市政府信息公开工作年度报告”和页码,要求正文页码从第l页开始,其中奇数页眉居右
最新回复
(
0
)