首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
admin
2020-03-16
28
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(一1,2,一3)
T
都是A属于λ=6的特征向量,求矩阵A。
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值。 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关。 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解得此方程组的基础解系α=(一1,1,1)
T
。 根据A(α
1
,α
2
,α)=(6α
1
,6α
2
,0)得 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
-1
=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/ldA4777K
0
考研数学二
相关试题推荐
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2005年]设y=(1+sinx)x,则dy∣x=π=_________.
[2006年]设函数y=y(x)由方程y=1一xey确定,则=__________.
[2002年]设0<a<b,证明不等式.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).计算极限
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
随机试题
租赁期限内,房屋所有权人转让房屋所有权,()。
设有关系模式R(A,B,C,D),F={A→B,B→C),则B+=________。
A.心悸气短,动则加剧,胸闷心痛,咳唾痰涎B.喘促气逆,不能平卧,痰稀量多,形寒肢冷C.下肢水肿,喘促气短,形寒肢冷,小便短少D.喘促日久,呼多吸少,面赤躁扰,汗出如珠E.咯痰黄稠,烦躁不安,心烦失眠,口干咽燥充血性心力衰竭心肾阳虚,痰
控制化学品危害的最理想的方法是()。
证券营业部是证券公司全资附属的法人机构,不得以合资、合作方式设立;不得以承包、租赁方式经营。()
增值税一般纳税人。2016年5月2日,甲公司以一批商品换入乙公司的一栋厂房,该交换具有商业实质。甲公司换出商品的账面价值为80万元,不含增值税的公允价值为100万元,增值税税额为17万元;另收到乙公司支付的补价17.1万元(含增值税税额)。甲公司换入厂房的
通常情况下,海洋运输相对于铁路运输而言,存在()的缺点。
5143268( )
Inthissection,youareaskedtowriteanessaybasedonthefollowinginformation.Makecommentsandexpressyourownopinion.
Themanwasseen______heavilytothegroundandnevergetupagain.
最新回复
(
0
)