设a0=1,a1=-2,a2=7/2an+1=-(1+)an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).

admin2018-05-21  32

问题 设a0=1,a1=-2,a2=7/2an+1=-(1+)an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).

选项

答案[*] 得幂级数的收敛半径R=1,所以当|x|<1时,幂级数[*]anxn收敛.由an+1=-(1+[*])an,得an=7/6(-1)n(n+1)(n≥3),所以 S(x)=[*]anxn=1-2x+[*](-1)n(n+1)xn, [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/lpr4777K
0

相关试题推荐
最新回复(0)