首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)和g(x)在(-∞,+∞)内都可导,且有fˊ(x)>gˊ(x),f(a)=g(a),证明:当x>a时,f(x)>g(x);当x<a时,f(x)<g(x).
设f(x)和g(x)在(-∞,+∞)内都可导,且有fˊ(x)>gˊ(x),f(a)=g(a),证明:当x>a时,f(x)>g(x);当x<a时,f(x)<g(x).
admin
2020-03-10
63
问题
设f(x)和g(x)在(-∞,+∞)内都可导,且有fˊ(x)>gˊ(x),f(a)=g(a),证明:当x>a时,f(x)>g(x);当x<a时,f(x)<g(x).
选项
答案
证: 令 F(x)=f(x)-g(x), 则 F(a)=f(a)-g(a)=0,又 Fˊ(x)=fˊ(x)-gˊ(x)>0, 所以函数F(x)在(-∞,+∞)内单调增加,从而在x>a时, F(x)>F(a),即 f(x)-g(x)>0,f(x)>g(x), 而x<a时,F(x)<F(a),即 f(x)-g(x)<0,f(x)<g(x), 证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/luD4777K
0
考研数学三
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a4不能由a1,a2,a3线性表示。
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时:(I)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;(Ⅲ)β可由α1,
设函数f(x)满足关系式f(x)+[f'(x)]2=x,且f'(0)=0,则()
设函数z=,则dz|(1,1)=__________。
设函数f(u,v)由关系式f[xg(y),y]=x+g(y),确定,其中函数g(y)可微,且g(y)≠0,则=___________。
设函数z=z(x,y)由方程(z+y)x=xy确定,则=_________。
设η1,ηs是非齐次线性方程组Ax=b的s个解,k1,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
随机试题
尝以一珊瑚树高二尺许赐恺,枝柯扶疏,世罕其比。柯:扶疏:罕:
风气内动属于虚的
新生儿溶血性贫血可能发生在
患儿男,6岁,反复咳嗽和喘息发作1个月,夜间为甚。体检:肺内哮鸣音和粗湿啰音,余无异常发现。胸部X线片示肺纹理增多,外周血WBC7×109/L,N0.50,L0.38,E0.12。该例的最佳治疗方案是
关于牙骨质龋病理形态描述哪项是错误的
根据现行规定,灌注导管底端至孔底的距离应为0.3~0.5mm,初灌时导管首次埋深应不小于( )。
在对市场经济进行规制的法律体系中,()处于基本法的地位。
已贴用的印花税票揭下重用造成未缴或少缴印花税的,由税务机关追缴其不缴或者少缴的税款、滞纳金,并处不缴或者少缴的税款()的罚款;构成犯罪的,依法追究刑事责任。
如果某组成部分进行外汇交易,对集团并不具有财务重大性,集团项目组的下列判断恰当的包括()。
Gotapenhandy?Tobestestimateyourstartupcosts,you’llneedtomakealistandthemoredetailedthebetter.Asmartwayt
最新回复
(
0
)