首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
admin
2019-08-11
113
问题
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ对应的矩阵,且r(A)=1.
(I)求方程组Aχ=0的通解.
(Ⅱ)求二次型f(χ
1
,χ
2
,χ
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E-A)χ=0有通解χ=Kξ
1
=k(-1,1,1)
T
,知A有特征值λ
1
=2,且A的对应于λ
1
=2的线性无关的特征向量为ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Aχ=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为ξ=(χ
1
,χ
2
,χ
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
ξ=-χ
1
+χ
2
+χ
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Aχ=0的通解为k
2
ξ
2
+k
3
ξ
3
,k
2
,k
3
为任意常数. (Ⅱ)求二次型即是求其对应矩阵. P=(ξ
1
,ξ
2
,ξ
3
)=[*]为可逆矩阵,且P
-1
=[*] 则[*] 故二次型为f(χ
1
,χ
2
,χ
3
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/myN4777K
0
考研数学二
相关试题推荐
设齐次线性方程组Ax=O为在方程组(*)的基础上增添一个方程2x1+ax2-4x3+bx4=0,得齐次线性方程组Bx=0为[img][/img]问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设平面图形D由摆线x=a(t-sint),y=a(1-cost),0≤t≤2兀,a>0的第一拱与x轴围成,求该图形D对y轴的面积矩My.
设讨论函数f(x)的奇偶性、单调性、极值;
曲线r=a(1+cosθ)(常数a>0)在点处的曲率k=______.
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
(05年)设函数f(x)连续,且f(0)≠0,求极限
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
(08年)设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解,求
(09年)计算二重积分(x—y)dxdy,其中D={(x,y)|(x—1)2+(y—1)2≤2,y≥x}.
随机试题
求微分方程y’+=0满足条件y|x=0=1的特解.
A.六淫B.瘀血C.痰饮D.戾气其形成后,影响血液的运行,导致经脉阻滞不通的是
以下哪项不属于降压药治疗对象
甲从某商场购回一个玻璃钢燃气灶。使用几天后,燃气灶突然炸裂,甲被碎片刺瞎左眼。下列哪些说法正确?
某IT企业职员2006年税前月薪6000元,另有1000元住房及交通补助。如果每月个人缴纳的“三险”合计为500元,则每月应纳所得税()(2006年起个人所得税费用减除标准调整为1600元)
全国银行间同业拆借中心与中央国债登记结算有限责任公司在收到买断式回购双方的最终仲裁或诉讼结果报告后3个工作日内将最终结果予以公告。()
企业合并中发生的审计、法律服务、评估咨询等与合并相关的费用,正确的会计处理方法有()。
我国税收制度按照构成方法和形式分类属于()。
时间知觉
WhatisthepurposeofJaneandRick’smeetingwiththetutor?
最新回复
(
0
)