首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
admin
2019-08-11
82
问题
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ对应的矩阵,且r(A)=1.
(I)求方程组Aχ=0的通解.
(Ⅱ)求二次型f(χ
1
,χ
2
,χ
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E-A)χ=0有通解χ=Kξ
1
=k(-1,1,1)
T
,知A有特征值λ
1
=2,且A的对应于λ
1
=2的线性无关的特征向量为ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Aχ=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为ξ=(χ
1
,χ
2
,χ
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
ξ=-χ
1
+χ
2
+χ
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Aχ=0的通解为k
2
ξ
2
+k
3
ξ
3
,k
2
,k
3
为任意常数. (Ⅱ)求二次型即是求其对应矩阵. P=(ξ
1
,ξ
2
,ξ
3
)=[*]为可逆矩阵,且P
-1
=[*] 则[*] 故二次型为f(χ
1
,χ
2
,χ
3
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/myN4777K
0
考研数学二
相关试题推荐
设f(x)在x=a处可导,则|f(x)|在x=a处不可导的充分必要条件是()
微分方程y″-3yˊ+2y=xex的通解为y=______.
设n为正整数,f(x)=xn+x-1.证明对于给定的n,f(x)在区间(0,+∞)内存在唯一的零点xn;
曲线r=a(1+cosθ)(常数a>0)在点处的曲率k=______.
(12年)过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点.区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
(13年)设cosx一1=xsinα(x),其中|α(x)|<,则当x→0时,α(x)是
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
随机试题
简述运用行政方法的必要性。
女性患者,24岁,5天前无明显诱因右腹部起红斑、水疱,伴灼热刺痛,继之腰部也出现皮疹。自觉口苦纳呆,食后腹胀,小便黄,大便不爽。检查:右腰腹部沿胸11~12神经分布区可见簇集呈带状排列的绿豆大小水疱,内容清澄,基底有炎性水肿性红斑。舌质淡,舌体胖大有齿痕,
患者,女,34岁。大叶性肺炎,右侧胸痛,体检时发现胸部不对称,右侧呼吸运动减弱。肺炎伴胸痛时的体位是
在运用移动平均法预测房地产价格时,一般应按照房地产价格变化的同期长度进行移动平均。()
提升绿色环保水平是建设“品质工程”的迫切需要,提升绿色环保水平的具体内容包括()。
以下属于招标采购的是()。
风险中立者选择资产的态度是当预期收益率相同时,偏好于具有低风险的资产;而对于具有同样风险的资产,则钟情于具有高预期收益率的资产。()
货币主义认为,扩张的财政政策如果没有相应的货币政策配合,就会产生“()”。
张红家有一筐苹果,第一天吃了,以后每天依次吃了前一天剩下的苹果的,最后剩下10个苹果,原来筐里有多少个苹果?()
Windows环境下可以用来修改主机默认网关设置的命令是()。
最新回复
(
0
)