首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组Ax=0的通解为_______.
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组Ax=0的通解为_______.
admin
2020-09-25
98
问题
设n阶矩阵A的各行元素之和均为零,且A的秩为n一1,则线性方程组Ax=0的通解为_______.
选项
答案
k(1,1,…,1)
T
解析
因为R(A)=n一1,则可知方程组Ax=0的基础解系只含有一个向量,故方程组饵的形式为x=kα(α为任一非零特解).
设矩阵A=
则Ax=0为
又由矩阵A的各行元素之和均为零知:
所以经观察可知(1,1,…,1)
T
是Ax=0的一个特解.
所以Ax=0的通解为k(1,1,…,1)
T
.故填k(1,1,…,1)
T
.
转载请注明原文地址:https://kaotiyun.com/show/oPx4777K
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
已知方程组有无穷多解,那么a=_______
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
设A=,B是3阶非零矩阵,且AB=O,则a=________
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
随机试题
列宁关于社会主义建设理论的主要贡献不包括【】
A、20%B、30%C、40%D、50%E、60%糖尿病患儿每日脂肪供给的热量约占总热量的
王某,女性,40岁,发热微恶寒,咳嗽,咯黏液痰或黏液脓性痰,痰量由少渐多,胸痛,咳时尤甚,呼吸不利,口干鼻燥,舌苔薄黄或薄白,脉浮数而滑。本病例选方为
再次免疫应答时产生抗体的特点是
下列选项中,()是正确组织施工企业建筑产品成本核算的重要条件之一。
(2006年考试真题)国内企业甲与外国投资者乙共同投资设立中外合资经营企业,甲出资55%,乙出资45%;如果合营企业的投资总额为1200万美元,则甲至少应出资275万美元,乙至少应出资225万美元。甲、乙双方的出资额符合中外合资经营企业法律制度的规定。(
根据合伙企业法律制度的规定,下列关于有限合伙企业设立的表述中,正确的有()。
违反产品质法规定应承担民事赔偿责任或缴纳罚款、罚金,其财产不足以同时支付的,应()。
窗体上有一个名称为Command1的命令按钮。要求编写程序,把文件n.txt的内容写到文件f2.txt中,然后将f1.txt删除。命令按钮的单击事件过程如下:PrivateSubCommand1_Click()Open"c:\f1.txt"For
Vibrationsinthegroundareapoorlyunderstoodbutprobablywidespreadmeansofcommunicationbetweenanimals.Itseemsunl
最新回复
(
0
)