首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
设总体X的概率密度为 其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
admin
2019-01-19
20
问题
设总体X的概率密度为
其中θ>一1是未知参数,X
1
,X
2
,…,X
n
是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
选项
答案
总体X的数学期望是E(X)=∫
-∞
+∞
xf(x)dx=∫
0
1
(θ+1)x
θ+1
dx=[*] 令[*]得到参数θ的矩估计量为[*] 设x
1
,x
2
,…,x
n
是相对于样本X
1
,X
2
,…,X
n
的一组观测值,所见似然函数为 [*] 当0<x
i
<1(i=1,2,3,…,n)时,L>0且lnL=nln(θ+1)+[*] 令[*]=0,解得θ的极大似然估计为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/omP4777K
0
考研数学三
相关试题推荐
设总体X服从指数分布,其密度函数为f(x)=其中λ>0是未知参数,X1,X2,…,Xn为取自总体X的样本.(1)求λ的最大似然估计量;(2)求的最大似然估计量;(3)判断的最大似然估计的无偏性;
设X1,X2,…,Xn是来自均值为θ的指数分布总体的样本,其中θ为未知,则下列估计量不是θ的无偏估计的为().
已知A是3阶实对称矩阵,特征值是1,2,一1,相应的特征向量依次为α1=(a一1,1,1)T,α2=(4,一a,1)T,α3=(a,2,6)T,A*是A的伴随矩阵,试求齐次方程组(A*+E)x=0的基础解系。
设A是n阶矩阵,ξ1,ξ2,…,ξt是齐次方程组Ax=0的基础解系,若存在ηi(i=1,2,…,t),使Aηi=ξi,证明:向量组ξ1,ξ2,…,ξt,η1,η2,…,ηt线性无关.
已知矩阵A=与对角矩阵相似,求An.
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
设f(x)可导,证明:F(x)=f(x)[1+|ln(1+arctanx)||在x=0处可导的充分必要条件是f(0)=0.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
已知二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2.a1,a2,…,an满足什么条件时f(x1,x2,…,xn)正定?
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
A.慢性失血性贫血B.真性红细胞增多症C.骨髓增生异常综合征D.急性红白血病E.再生障碍性贫血以原红和早幼红细胞增多为主的疾病是
某孕妇,28岁。G3P8,孕38周。今突感剧烈腹痛伴有少量阴道流血。查体:血压150/110mmHg,子宫似足月妊娠大小,硬如木板,有压痛,胎心90次/分,胎位不清。其最可能发生了
妊娠5个月以上的妇女引起肾盂肾炎最常见的原因是
A.尿中VMA明显增多B.低血钾,高血压C.尿中红、白细胞满视野D.尿中蛋白增高E.尿中17-羟或17-酮增高嗜铬细胞瘤
A.急性阑尾炎B.输卵管卵巢囊肿C.稽留流产D.卵巢黄体破裂E.子宫穿孔最易与输卵管妊娠破裂相混淆的疾病是
投资银行业的真正发展是在20世纪50年代前后。()
魏晋时期,士大夫把道家的_______、_______和儒家的_______称为三玄。
设X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自相互独立的标准正态总体X与Y的简单随机样本,令,则D(z)=__________.
给定供应关系SPJ(供应商号,零件号,工程号,数量),查询至少供应了3项工程(包含3项)的供应商,输出其供应商号和供应零件数量的总和,并按供应商号降序排列。SELECT供应商号,SUM(数量)FROMSPJ(30)(3
Listentopartofalectureinazoologyclass.Professor:Asyouknowfromthetextbook,mimicryisn’tlimitedtoinsects,but
最新回复
(
0
)