首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解是________。
若二阶常系数齐次线性微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解是________。
admin
2018-12-29
61
问题
若二阶常系数齐次线性微分方程y″+ay′+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解是________。
选项
答案
y=x(1—e
*
)+2
解析
由y=(C
1
+C
2
x)e
*
是齐次方程的通解可知,r=1是齐次方程对应的特征方程的二重根,则特征方程为(r—1)
2
=0,即r
2
—2r+1=0,则a= —2,b=1。
设非齐次方程的一个特解为y
*
=Ax+B,将之代入原方程得A=1,B=2,非齐次方程的通解为y=(C
1
+C
2
x)e
x
+x+2。
由y(0)=2,y′(0)=0得
则C
1
=0,C
2
= —1。
因此满足条件的解为y= —xe
x
+x+2=x(1—e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/oxM4777K
0
考研数学一
相关试题推荐
设曲线积分其中L为平面上任意一条分段光滑闭曲线,且P(x,y)=2[xφ(y)+ψ(y)],Q(x,y)=x2ψ(y)+2xy2一2xφ(y).其中φ(y)、ψ(y)在R’内有连续的导数,且φ(0)=一2,ψ(0)=1.求曲线积分
计算二重积分sin(x2+y2)dxdy,其中积分区域D={(x,y}|x2+y2≤π}.
设函数f(x)在(一∞,+∞)内具有一阶连续的导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记证明:曲线积分I与路径无关.
设函数f(x)在x=x0处可导,则函数|f(x)|在点x=x0处不可导的充分必要条件是().
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设B是n×n矩阵,A是n阶正定阵,证明:BTAB也是正定阵的充要条件为r(B)=n.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
函数的定义域为______.
随机试题
论述《红旗谱》的思想艺术成就。
CT增强扫描是诊断结节型肝细胞癌的一种重要影像学方法,病灶动态增强扫描(动脉期、门静脉期或平衡期)典型强化模式是
热水横管的敷设坡度最小值不宜小于:(2004,67)
对于一手个人住房贷款,银行最主要的合作单位是房地产经纪商。()
2×17年1月1日,甲公司从丁公司经营租入办公室一套。租赁合同规定:租赁期为5年,第1年免租金;第2年和第3年各支付租金200万元;第4年和第5年各支付租金400万元;租金总额共计1200万元。甲公司在租赁期的第1年应确认的租金费用为()万元。
在Excel中,将表格全部“选择”,应当按______+______+______组合键来完成。
人的社会属性是人的本质属性。()
根据材料,全国的高速公路总里程有多少公里?在各地区的公路总里程中,中部地区与西部地区的高速公路所占比重之比是:
编写如下程序:DimnumAsInteger,rAsInteger,nAsInteger,iAsIntegerDimarr(5)AsIntegerPrivateSubCommand1_Click()num=
Thegoodnewsisthattoday’steenagersareeagerreadersandprolificwriters.Thebadnewsis【C1】______theyarereadingandwr
最新回复
(
0
)