首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
admin
2017-06-14
35
问题
设A
m×n
,r(A)=m,B
n×(n-m)
,r(B)=n-m,且满足关系AB=0.证明:若η是齐次方程Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
选项
答案
将B按列分块,设B=[β
1
,β
2
,…,β
n-m
],因已知AB=0,故知B的每-列均是AX=0的解,由r(A)=m,r(B)=n-m,β
1
,β
2
,…,β
n-m
是AX=0的基础解系. 若η是AX=0的解向量,则η可由基础解系β
1
,β
2
,…,β
n-m
线性表示,且表示法唯一,即 η=x
1
β
1
+x
2
β
2
+…+x
n-m
β
n-m
, 即存在唯一的ξ,使Bξ=η.
解析
转载请注明原文地址:https://kaotiyun.com/show/Qpu4777K
0
考研数学一
相关试题推荐
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
随机试题
发绀的出现意味着毛细血管中还原型血红蛋白达到
根据Killip分级,心功能Ⅱ级的表现是
既有法人内部融资的渠道和方式主要有()。
()是人类社会生存与发展的自然基础。
建筑施工企业取得安全生产许可证,应当具备的安全生产条件有()。
投保方无需告知的重要事实不包括()。
某企业生产白象(WhiteElephant)牌电池。在出口印度市场时受到冷落,原因为白象在印度传统文化中被认为是“废物”。这表明一家企业在开拓国际市场时应注意()。
我国是一个多民族的国家,各民族都有特色乐器。下面对应不正确的是()。
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟.作答参考时限为110分钟。满分100分。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在准考证号
A、She’stoobusytohavedinnerwiththemanthismonth.B、Shedoesn’tknowhernewscheduleyet.C、She’llgotodinnerwiththe
最新回复
(
0
)