首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
admin
2019-03-12
47
问题
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2e
x
一f(x),且f(0)=0,g(0)=2,求
选项
答案
由f’(x)=g(x)可得f’’(x)=g’(x),结合g’(x)=2e
x
一f(x)可得.厂(x)满足微分方程f’’(x)=2e
x
一f(x),即y’’=2e
x
一y. 它对应的齐次方程为y’’+y=0,特征方程为λ
2
+1=0,特征根为λ
1
=i,λ
2
=一i.闲此y’’+y=0的通解为y=C
1
cosx+C
2
sinx. 在y’’+y=2e
x
中,由于A=1不是其齐次方程的特征根,因此它有形如y=ax
x
的特解,将y=ae
x
代人方程y’’+y=2e
x
中可得a=1.因此y’’+y=2e
x
的通解为 y=C
1
cos+C
2
sinx+e
x
. 由.f(0)=0,g(0)=2,可知f(x)是y’’+y=2e
x
的满足初值条件y(0)=0,y’(0)=2的特解,将初值条件代入通解中得C
1
=一1,C
2
=1.因此 f(x)=一cosx+sinx+e
x
. [*]
解析
由f’(x)=g(x)两边求导可得f’’(x)=g’(x),再由g’(x)=2e
x
一f(x)可得f(x)所满足的微分方程.
转载请注明原文地址:https://kaotiyun.com/show/oyP4777K
0
考研数学三
相关试题推荐
求I=,y=x及x=0所围成区域.
设曲线方程为y=e—x(x≥0).(Ⅰ)把曲线y=e—x,x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ);并求满足V(a)=V(ξ)的a值;(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标
求arctanx带皮亚诺余项的5阶麦克劳林公式.
设随机变量序列X1,…,Xn,…相互独立,根据辛钦大数定律,当n一∞时依概率收敛于其数学期望,只要{Xn,n≥1}
设事件A与B满足条件AB=,则
设A为n阶实对称矩阵,满足A2=层,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1.2,2,1)T+c(1,—2,4,0)T,c任意.记B=(α3,α2,α1,β—α4).求方程组Bx=α1—α2的通解.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
假设随机变量X1,X2,X3,X4相互独立且都服从0一1分布:P{Xi=1}=p,P{Xi=0}=1一p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于,则p=________。
随机试题
渊博的知识是导游人员的立业之基。()
甲亢危象的治疗,下列哪组最理想?
黄牛,5岁,高温季节田间使役时,突然发病,呼吸困难,流泡沫状鼻液,黏膜发绀。体温40.8℃,呼吸60次/分钟,脉搏98次/分钟。肺部听诊湿啰音。X线影像显示肺部阴影加重,肺门血管纹理显著。血气分析最可能异常的是
A.不同的核酸链经变性处理,它们之间形成局部的双链B.一小段核苷酸聚合体的单链,用放射性核素或生物素来标记其末端或全链C.运输氨基酸D.单股DNA恢复成双股DNAE.50%双链DNA变性时的温度tRNA的生理功能是
患者,男性,63岁。心力衰竭,自诉稍事活动即出现呼吸困难、乏力、心悸等症状,该老人的活动原则是
关于平板玻璃特性的说法,正确的有()。
下列各项中,不应计入交易性金融资产入账价值的有()。
尽管环境保护任务艰巨,但却迫在眉睫。不容_________。经济发展与环境保护不是对立的关系:一方面,经济发展一定要以环境的_________能力为基础;另一方面,环境保护_________的是粗放型的经济发展模式,不会阻碍经济的健康发展。依次填入画横线部
事务是由一系列操作组成的,事务的执行表现为事务中各个操作的执行。每个事务应具有结束操作。当一个事务发生故障需要终止并取消所有已执行的数据修改时应执行________操作。
IcanforgiveamistakebutIcan’tforgive(honest)______.
最新回复
(
0
)