首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
admin
2019-03-12
32
问题
设f(x),g(x)满足 f’(x)=g(x), g’(x)=2e
x
一f(x),且f(0)=0,g(0)=2,求
选项
答案
由f’(x)=g(x)可得f’’(x)=g’(x),结合g’(x)=2e
x
一f(x)可得.厂(x)满足微分方程f’’(x)=2e
x
一f(x),即y’’=2e
x
一y. 它对应的齐次方程为y’’+y=0,特征方程为λ
2
+1=0,特征根为λ
1
=i,λ
2
=一i.闲此y’’+y=0的通解为y=C
1
cosx+C
2
sinx. 在y’’+y=2e
x
中,由于A=1不是其齐次方程的特征根,因此它有形如y=ax
x
的特解,将y=ae
x
代人方程y’’+y=2e
x
中可得a=1.因此y’’+y=2e
x
的通解为 y=C
1
cos+C
2
sinx+e
x
. 由.f(0)=0,g(0)=2,可知f(x)是y’’+y=2e
x
的满足初值条件y(0)=0,y’(0)=2的特解,将初值条件代入通解中得C
1
=一1,C
2
=1.因此 f(x)=一cosx+sinx+e
x
. [*]
解析
由f’(x)=g(x)两边求导可得f’’(x)=g’(x),再由g’(x)=2e
x
一f(x)可得f(x)所满足的微分方程.
转载请注明原文地址:https://kaotiyun.com/show/oyP4777K
0
考研数学三
相关试题推荐
设z=z(x,y)是由方程F(xy,y+z,xz)=0所确定的隐函数,且F具有一阶连续偏导数,求.
设函数f(x)在(一∞,+∞)内满足f(x)=f(x一π)+sinx,且当x∈[0,π)时,f(x)=x,求∫π3πf(x)dx.
设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零.记F(x)=(x>a).证明:F(x)在(a,+∞)内单调增加.
设函数f(x)有任意阶导数,且f’(x)=f2(x),则当n>2时,f(n)(x)=________.
设函数f(x)在区间[0,1]上具有连续导数,f(0)=1,且满足其中Dt={(x,y)|0≤x≤t,0≤y≤t一x}(0<t≤1).求f(x)的表达式.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{y≤2}.
已知矩阵A=与B=相似.(Ⅰ)求χ,y,z的值;(Ⅱ)求可逆矩阵P,使P-1AP=B.
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Aχ=0的基础解系为(1,0,2,0)T,则方程组A*χ=0基础解系为().
设A是三阶实对称矩阵,满足A3=2A2+5A一6E,且kE+A是正定阵,则k的取值范围是________。
设z=f(x,y),x=g(y,z)+φ(),其中f,g,φ在其定义域内均可微,求。
随机试题
下列防水材料中,属于柔性防水的是()。
设f(x)=x-ln(1+x),则在区间(0,+∞)内()
HIV引起AIDS的感染类型属于
A.银翘散B.新加香薷饮C.羚角钩藤汤D.黄连解毒汤E.安宫牛黄丸以上首选用于治疗急惊风湿热疫毒证的方剂是
下列哪一项不属于医德理论
分包工程的质量合格文件必须是()签章。
根据审计准则的规定,在记录实施审计程序的性质、时间和范围时,应当记录测试的特定项目或事项的识别特征。在记录识别特征时,下列做法正确的有()。
A、34B、42C、48D、58C对角正方形内两数字之和相等,即41+6=34+13,20+55=27+?,可见问号处是48,故选C。
DirtyMoneyforLaundriesSellingillegaldrugsisbigbusinessandlaunderingtheproceedsanartform.Onekilogram,or2.
Heisplanninganothertourabroad,yethispassportwill______attheendofthismonth.
最新回复
(
0
)