首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设函数y=y(x)由方程sin(x2+y2)+ex一xy2=0所确定,求 (Ⅱ)设函数y=y(x)由方程x3+y3一sin3x+6y=0所确定,求dy|x=0; (Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
(I)设函数y=y(x)由方程sin(x2+y2)+ex一xy2=0所确定,求 (Ⅱ)设函数y=y(x)由方程x3+y3一sin3x+6y=0所确定,求dy|x=0; (Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
admin
2020-03-10
56
问题
(I)设函数y=y(x)由方程sin(x
2
+y
2
)+e
x
一xy
2
=0所确定,求
(Ⅱ)设函数y=y(x)由方程x
3
+y
3
一sin3x+6y=0所确定,求dy|
x=0
;
(Ⅲ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
选项
答案
(I)方法1 将原方程两边直接对x求导数,并注意y是x的函数,然后解出y’即可.由 (2x+2y·y’)cos(x
2
+y
2
)+e
x
一y
2
—2xy·y’=0, 得 [*] 方法2 将方程sin(x
2
+y
2
)+e
x
—xy
2
=0两边同时求全微分并写成f(x,y)dy=g(x,y)dx形式, 则[*]即为所求.由 cos(x
2
+y
2
)(2xdx+2ydy)+e
x
dx一y
2
dx一2xydy=0, 得 [*] (Ⅱ)方法1 先用隐函数求导法求出y’,再求微分dy=y’dx.在方程的两边对x求导,并注意到y是x的函数,得 3x
2
+3y
2
y’一3cos3x+6y’=0. 又y|
x=0
=0,上式中令x=0,y=0解得[*]从而[*] 方法2 利用一阶微分形式的不变性.由 d(x
3
+y
3
一sin3x+6y)=0, 即3x
2
dx+3y
2
dy一3cos3xdx+6dy=0, 又y|
x=0
=0,上式中令x=0,y=0解得[*] (Ⅲ)y=y(x)由方程f(x+y)一y=0确定,f为抽象函数,若把f(x+y)看成f(u),u=x+y,y=y(x),则变成复合函数和隐函数的求导问题.注意,f(x+y)及其导函数f’(x+y)均是x的复合函数. 将y=f(x+y)两边对x求导,并注意y是x的函数,f是关于x的复合函数,有 y’=f’·(1+y’), 即[*] 又由y’=(1+y’)f’再对x求导,并注意),y’是x的函数,f’仍然是关于x的复合函数,有 y"=(1+y’)’f’+(1+y’)(f’)’ =y’f’+(1+y’)f"·(1+y’) =y"f’+(1+y’)
2
f", 将[*]代入并解出y"即得[*] 或直接由[*]再对x求导,同样可求得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/p5D4777K
0
考研数学三
相关试题推荐
设数列{an},{bn}满足ebn=ean-an,且an>0,n=1,2,3,…,证明:(Ⅰ)bn>0;(Ⅱ)若收敛,则收敛。
求幂级数的收敛域D和函数s(x)。
若级数(a1+a2)+(a3+a4)+…+(a2n-1+a2n)+…发散,则级数_____________________。
设函数f(x)在(-∞,+∞)内连续,且,证明:(Ⅰ)若f(x)是偶函数,则F(x)也是偶函数;(Ⅱ)若f(x)是单调减函数,则F(x)也是单调减函数。
设可导函数y=y(x)是由方程所确定,则=_____________________。
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,。证明
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
设n阶矩阵A=。证明:行列式|A|=(n+1)an。
设随机变量U服从二项分布B(2,),随机变量求随机变量X一Y与X+Y的方差和X与Y的协方差。
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤l}。
随机试题
某公司推出的新产品预计每天销售5万件,每件定价为40元,利润为产品定价的30%。公司为了打开市场推出九折促销活动,并且以每天10万元的费用为产品和促销活动做广告宣传。问销量至少要达到预计销量的多少倍以上,每天的盈利才能超过促销活动之前?(
机器试机前首先须进行的是( )。
治疗肝肾亏损型之痿证,可选用
关于全国人大职权,下列哪些说法是正确的?(2010年卷一64题)
关于人工挖孔桩施工安全控制要点,下列说法错误的是()。
人民教育出版社出版的《义务教育教科书生物学》设置了大量的课外阅读栏目,以扩展学生视野,帮助学生认识生物学的价值。下列不属于课外阅读栏目的是()。
关于法律起源一般规律的表述,正确的是______。
操作系统具备五大管理功能,下述不属于这五大管理功能的是______。
ALuckyBreakActorAntonioBanderasisusedtobreakingbones,anditalwaysseemstohappenwhenhe’s【C1】______sport.In
HowtoWriteaBookReviewI.ThedefinitionofabookreviewA.adescriptiveandcriticalorevaluativeaccountofabookB.a
最新回复
(
0
)