首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关;
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关;
admin
2018-05-21
41
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关;
选项
答案
令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0[*]x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 …x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0[*]x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/pKr4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
将1m长的木棒截成两段,其中第一段的长度为X,第二段长度为Y,则X+2Y与3X+Y的相关系数为()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
设f(x)为微分方程y’一xy=g(x)满足y(0)=1的解,其中g(x)=∫0xsin[(x—t)2]dt,则有()
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设总体X的概率密度为其中θ∈(0,+∞)为未知参数X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}.(Ⅰ)求丁的概率密度;(II)确定a,使得a丁为θ的无偏估计.
已知齐次线性方程组其中≠0.试讨论α1,α2,…,αn和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为
抛掷两枚骰子,在第一枚骰子出现的点数能够被3整除的条件下,求两枚骰子出现的点数之和大于8的概率.
随机试题
关于血浆蛋白的性质,下列说法不正确的有()。
根据我国民事诉讼法的规定,执行担保成立无须具备以下哪项条件?()
台湾地区对地权采取了一定的限制措施,包括()。
经济学家萨缪尔森在其经典著作《经济学》中,对通货膨胀的定义是()。
世界银行认为,在知识成为战略性资源之日,发展中国家遇到了迅速赶上发达国家的大好槐遇,缩小彼此存在着的技术差距。在电信领域,发展中国家直接采用新技术,实现了电信网络数字化。上述文字没有提及的一项是()。
如果你站在大桥上看桥下急速的流水,一会儿之后,你就会感觉到桥在动。这种现象心理学称之为()
在关于公务员要不要实行末位淘汰制的争论中,张宏的观点是:实行末位淘汰制,能促使人们积极工作,从而提高机关的工作效率。金晶的观点是:问题在于当一个公务员已经完成了自己的本职工作后,是否还应该被淘汰。在一些机关试行了末位淘汰制后,确实提高了工作效率。
操作系统通常采用(228)解决进程间合作和资源共享所带来的同步与互斥问题。若在系统中有若干个互斥资源R,5个并发进程,每个进程都需要5个资源R,那么使系统不发生死锁的资源R的最少数日为(229)。
【B1】【B3】
Giventhelackoffitbetweengiftedstudentsandtheirschools,itisnotsurprisingthatsuchstudentsoftenhavelittlegood
最新回复
(
0
)