首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
admin
2018-01-26
48
问题
已知矩阵A=
有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q
-1
AQ=Λ。
选项
答案
因λ=5是矩阵A的特征值,则由 |5E-A|=[*]=3(4-a
2
)=0, 可得a=±2。 当a>0,即a=2时,则由矩阵A的特征多项式 |λE-A|=[*]=(λ-2)(λ-5)(λ-1)=0, 可得矩阵A的特征值是1,2,5。 由(E-A)x=0,得基础解系α
1
=(0,1,-1)
T
; 由(2E-A)x=0,得基础解系α
2
=(1,0,0)
T
; 由(5E-A)x=0,得基础解系α
3
=(0,1,1)
T
。 即矩阵A属于特征值1,2,5的特征向量分别是α
1
,α
2
,α
3
。 由于A为实对称矩阵,且实对称矩阵不同特征值的特征向量相互正交,故只需将以上特征向量单位化,即有 γ
1
=[*],γ
2
=[*],γ
3
=[*] 那么,令Q=(γ
1
,γ
2
,γ
3
)=[*],则有Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rSr4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(II)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的是()
(1)求函数项级数e-x+2e-2x+…+ne-nx+…收敛时x的取值范围;(2)当上述级数收敛时,求其和函数S(x),并求
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA一α≠b.
方程y(4)一2y’’’一3y’’=e-3x一2e-x+x的特解形式(其中a,b,c,d为常数)是()
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使.
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy.(1)设M(x0,y0)为区域D上一点,问h(x,y)在该点沿平面上何方向的方向导
已知曲面z=4一x2一y2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是()
(1999年)设一∞<x<+∞,其中,(n=0,1,2,…),则等于()
(2014年)设f(x)是周期为4的可导奇函数,且f′(x)=2(x一1),x∈[0,2],则f(7)=___________。
随机试题
巨幼红细胞贫血的血象变化包括
最多见的直肠肛管周围脓肿是
患者,男性,50岁。高血压18年,上班中出现头晕、头痛,血压180/100mmlHg,同事将其送往医院治疗,不久症状好转,诊断短暂性脑缺血发作。这种发作最常见的病因是
【2005年第55题】粉煤灰硅酸盐水泥具有以下何种特性?
互斥型方案经济效果评价的准则有()。
下列经济业务所产生的现金流量中,属于“经营活动产生的现金流量”的是()。
以下各项中,属于的是认为贷款或信用卡的逾期记录与实际不符的异议类型的是()。
新技术和新媒体的出现,使人的阅读内容、阅读媒介、阅读习惯发生了变化,呈现多元化、数字化、个性化的特点,读者被多样化地细分,“界面”阅读受到年轻人__________。伴随便利而来的是娱乐化的泛滥,这是一个泛娱乐化的时代,一切文化都心甘情愿地成为娱乐的___
经济增加值[中山大学2014金融硕士]
生产力决定生产关系,生产关系反作用于生产力,_______________________________,这三项内容构成生产关系必须适合生产力性质的规律。这是人类社会发展最基本、最普遍的规律。
最新回复
(
0
)