首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
admin
2021-11-09
20
问题
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
选项
答案
因为f"(x)≥0,所以f’(x)单调不减,当x>0时,f’(x)≥f’(0)=1.因为x>0时,f(x)-f(0)=f’(ε)x,从而f(x)≥f(0)+x,因为[*],所以[*].由f(x)在[0,+∞)上连续且f(0)=-2<0,[*],则f(x)=0在(0,+∞)内至少有一个根,又由f’(x)≥1>0,得到方程的根是唯一的。
解析
转载请注明原文地址:https://kaotiyun.com/show/rSy4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,且AB=A+B,则下列命题中,①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的有()个.
已知,其中f(x)二阶可微.求f(0),fˊ(0),f"(0)及
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式证明:f"(u)+fˊ(u)/u=0;
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为().
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则求α1,α2,α3,α4,β的一个极大无关组.
设三角形三边的长分别为a,b,c,此三角形的面积设为S,求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设函数f(x)二阶连续可导且满足关系f"(x)+f’2(x)=x,且f’(0)=0,则()。
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ε∈(0,1),使得.
设求f’(x)并讨论f’(x)在x=0处的连续性.
随机试题
()起全面取消农业税,标志着一个在我国存在两千多的古老税种宣告终结。
简述劳务收入的确认条件。
20世纪80年代,医院药学处于
特种设备使用单位应当()
某机械制造企业2015年产品销售收入4000万元,销售材料收入200万元,处置旧厂房取得收入50万元,转让某项专利技术所有权取得收入300万元。业务招待费支出50万元,所得税前准予扣除的业务招待费为()万元。
乙污水处理厂是由甲环保工程有限公司(以下简称甲公司)投资实施的“BOT”项目。于2012年开始建设,2014年年底完工,2015年1月开始通水运行。该厂总规模为月处理污水120万吨。该厂建设总投资3600万元,特许经营期为25年。经营期间,当地政府按处理每
马克思主义哲学同具体科学的关系是()。
2007年以来,北京地铁不分路途远近,不管是否换乘,票价一律两元,2013年3月8日,北京地铁客运量首次突破1000万人次,并稳定下来,早晚上下班高峰时段,地铁站台内等四五趟车是家常便饭,于是有人提议:地铁票价应该上涨,通过价格杠杆来分散高峰时段客流压力
A、Theydidn’twanttodressconservatively.B、Theysmokedmorecigarettesthanbefore.C、Theyonlydrankwinewithpeersinpubl
Overthepastdecade,therehasbeenaseachangeinChina’seconomicpolicies.Likeotherdevelopingcountrieswhichareattemp
最新回复
(
0
)