首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-03-11
60
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解;
②(2)的解必是(1)的解;
③(1)的解不是(2)的解;
④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②
B、①④
C、③④
D、②③
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/rxP4777K
0
考研数学三
相关试题推荐
设函数z=z(X,y)由方程(z+y)X=Xy确定,则=_________.
设随机变量(X,Y)的联合密度为f(x,y)=,则P(X>5|y≤3)=_______.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
若则(3A)*=____________.
考虑一元二次方程x2+Bx+C=0,其中B,C分别是将一枚色子(骰子)接连掷两次先后出现的点数,求该方程有实根的概率p和有重根的概率q.
函数y=xcosx在(-∞,+∞)内是否有界?又问当x→+∞时这个函数是否为无穷大?为什么?用Mathematica作出图形并验证你的结论.
A和B都是n阶矩阵.给出下列条件①A是数量矩阵.②A和B都可逆.③(A+B)2=A2+2AB+B2.④AB=cE.⑤(AB)2=A2B2.则其中可推出AB=BA的有()
已知三阶矩阵A的特征值为0,±1,则下列结论中不正确的是()
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是()
若则a=__________,b=_________.
随机试题
子宫内膜异位症的治疗原则包括:去除病灶、减轻症状、___________、预防复发、个体化治疗。
加料斗中颗粒过多或过少会造成
发包人对分包合同的、管理主要表现为()。
双层式或多层式热拌热铺沥青混合料面层之间应喷洒()。
境内居民个人可以用( )从事B股交易。
某电器专卖店(一般纳税人)2014年8月发生下列购销业务:(1)销售空调300台,每台零售价格3000元,商场派人负责安装,每台收取安装费200元;(2)采取有奖销售方式销售电冰箱100台,每台零售价格2800元;将外购的50只石英手表对外投资,市场
Itisgenerallyconsideredunwisetogiveachild______heorshewants.
简述学习动机的作用。(2017年南京师大)
【B1】【B8】
Therehappenedtobesomestudentsintheroom,______?
最新回复
(
0
)