首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-03-11
78
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解;
②(2)的解必是(1)的解;
③(1)的解不是(2)的解;
④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②
B、①④
C、③④
D、②③
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
所以应选A。
转载请注明原文地址:https://kaotiyun.com/show/rxP4777K
0
考研数学三
相关试题推荐
设f’’(x)连续,f’(x)≠0,则=_______
设A为四阶矩阵,|A*|=8,则=________.
假设随机变量X1,X2,X3,X4相互独立且都服从0一1分布:P{Xi=1}=p,P{Xi=0}=1—p(i=1,2,3,4,0<p<1),已知二阶行列式的值大于零的概率等于则p=______.
设3阶对称阵A的特征值为λ1=6,λ2=λ3=3,与特征值λ1=6对应的特征向量为ξ1=(1,1,1)T,求A.
求幂级数的收敛半径.
设f(x)二阶连续可导,f"(0)=4,求下列极限。
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求a.
(Ⅰ)求函数y(x)=1++…(一∞<x<+∞)所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
(1)设随机变量X,Y不相关,X~U(-3,3),Y的密度为fY(y)=根据切比雪夫不等式,有P{|X-Y|<3)≥______.(2)设随机变量X1,X2,…,X10相互独立,且Xi~π(i)(i=1,2,…,10),,根据车比雪夫不等式,P(4<
随机试题
一台安装了签名识别软件的电脑——这种软件仅限于那些在文档中签名的人进入计算机——不仅通过分析签名的形状,而且通过分析诸如笔尖的压力和签名的速度等特征来识别某人的签名。即使是最机灵的伪造者也不能复制该程序能分析的所有特征。以下哪项结论能合逻辑地从上述陈述中推
“文化圈”
正常成人锯齿缘距角膜缘为
女,62岁。绝经11年,阴道反复流血4个月就诊。查体:肥胖,一般情况好,血压150/105mmHg,妇科检查:阴道少许血液,宫颈光滑,子宫正常大,双附件正常。最可能的诊断是
仪表组件中的取样、取压部件,一般包括()。
下列选项中,没有语病的一项是()。
唐代规定三品以下的官员住所房屋面阔间数不得超过5间。( )
BecauseWebserversareplatformandapplication(1),theycansendorrequestdatafromlegacyorexternalapplicationsincludi
若有以下程序main(){inta=-2,b=0;do{++b;}while(a++);printf("%d,%d\n",a,b);}则程序的输出结果是
Nooneshouldbeforcedtowearauniformunderanycircumstance.Uniformsaredemandingtothehumanspiritandtotallyunnece
最新回复
(
0
)