首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2018-05-21
45
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sin3c+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x
2
y)dy=0,整理得(xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycoscrdx+sinxdy)+(-ysinxdx+cosxdy)=0, 即d(1/2x
2
y
2
+2xy-2ysinx+ycosx)=0, 原方程的通解为1/2y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/sOr4777K
0
考研数学一
相关试题推荐
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
方程(xy2+x)dx+(y一x2y)dy=0的通解是_________.
设函数u=f(x,y)具有二阶连续偏导数,且满足等式=0.确定a,b的值,使等式在变换ξ=x+ay,η=x+by下简化为=0.
设0≤a<b,f(x)在[a,b]上连续,(a,b)内可导,证明:在(a,b)内存在三点x1,x2,x3使
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
计算二重积分I=|xy|min{x,y}曲,其中D={(x,y)||x|≤1,|y|≤1}.
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
设f(x;t)=((x-)(t-1)>0,x≠t),函数f(x)由下列表达式确定,求出f(x)的连续区间和间断点,并研究f(x)在间断点处的左右极限.
随机试题
不属于红细胞生成减少所致的贫血是
(2007年)关于法律概念、法律原则、法律规则的理解和表述,下列哪一选项不能成立?()
关于合同争端仲裁原则的说法,错误的是()。
登记会计账簿的直接依据是( )。
下列选项中,正确表达社会主义集体主义内容的有()。①国家和集体利益高于个人利益②尊重和保护一切个人利益③个人利益、集体利益、国家利益在根本上是一致的④集体只是实现个人利益的手段
我国国有企业改革的方向是()。
2011年山西省全年出口煤炭180.3万吨,下降6.1%,出口金额4.2亿美元,增长24.6%;出口焦炭161.4万吨,下降2.8%,出口金额7.6亿美元,增长9.2%;出口镁及其制品9.7万吨,下降0.8%,出口金额3.0亿美元,增长10.2%;出口钢材
正常行驶的汽车遇到意外时,司机紧急刹车,这属于()的情绪状态。
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
WhatWilltheWorldBelikeinFiftyYears?A)Thisweeksometopscientists,includingNobelPrizewinners,gavetheirvisionof
最新回复
(
0
)