首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,b]上连续,在(0,b)内可导,f(0)=0,证明:在(0,b)内至少存在一点ξ,使f(b)=(1+ξ)ln(1+b)f’(ξ).
f(x)在[0,b]上连续,在(0,b)内可导,f(0)=0,证明:在(0,b)内至少存在一点ξ,使f(b)=(1+ξ)ln(1+b)f’(ξ).
admin
2022-06-04
77
问题
f(x)在[0,b]上连续,在(0,b)内可导,f(0)=0,证明:在(0,b)内至少存在一点ξ,使f(b)=(1+ξ)ln(1+b)f’(ξ).
选项
答案
由题设知,f(x)和ln(1+x)在闭区间[0,b]上连续,开区间(0,b)内可导,且[(ln(1+x))]’≠0,x∈(0,b),因此f(x)和ln(1+x)在[0,b]上满足柯西中值定理的条件,故有ξ∈(0,b),使得 [*] 即 f(B)=(1+ξ)ln(1+b)f’(ξ)
解析
转载请注明原文地址:https://kaotiyun.com/show/sXR4777K
0
考研数学三
相关试题推荐
对于一切实数t,函数f(t)为连续的正函数且可导,又∫(—t)=f(t),设证明g’(x)单调增加;
设有级数证明此级数的和函数y(x)满足微分方程y’’—y=—l;
设A是n阶正定矩阵,证明:|E+A|>1.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设α为n维非零列向量,A=E-ααT.(1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设λ0为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,A2+2A+3E的特征值;(3)若|A|≠0,求A-1,A*,E-A-1的特征值.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
简述图书出版者的义务。
复凝聚法制备微囊时所用的材料有()
下列属于运用收益法进行企业价值评估程序的有()。
()是指不法分子注册成立经销汽车的空壳公司,在无现货汽车可卖的情况下,以无抵押贷款为诱惑,吸引居民办理个人汽车贷款,以达到骗贷骗保目的。
集装单元化是通过(),来实现物流功能作业的机械化和自动化的。
下列拟定的公告标题中,正确的是()。
路线价估价法
全球性生态问题的出现,凸显了地理环境对社会发展的重要作用。下列观点正确的有
Whataretheytalkingabout?
Matchthephobicstateintheboxtothesymptomsbelow.ChooseyouranswersfromtheboxandwritethelettersA-Dnexttoq
最新回复
(
0
)