首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明: (b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
admin
2018-06-27
35
问题
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明:
(b-a)∫
a
b
f(x)g(x)dx≥∫
a
b
f(x)dx∫
a
b
g(x)dx. (*)
选项
答案
引进辅助函数 F(x)=(x-a)∫
a
x
f(t)dt-∫
a
x
f(t)dt∫
a
x
g(t)dt 转化为证明F(x)≥0(x∈[a,b]). 由F(a)=0, F’(x)=∫
a
x
f(t)g(t)dt+(x-a)f(x)g(x)-f(x)∫
a
x
g(t)dt-g(x)∫
a
x
f(t)dt =∫
a
x
f(t)[g(t)-g(x)dt-∫
a
x
f(x)[g(t)-g(x)dt =∫
a
x
[f(t)-f(x)][g(x)-g(x)]dt≥0(x∈[a,b]) 其中(x-a)f(x)g(x)=f∫
a
x
(x)g(x)dt,我们可得F(x)在[a,b]单调不减[*]F(x)≥F(a)=0(x∈[a,b]),特别有 F(b)≥0 即原式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/sak4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)内二阶可导,并当x>0时满足xf’’(x)+3戈[f’(x)]2≤1—e-x.又设f(0)=f’(0)=0,求证:当x>0时,
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
设函数f(x)在[一l,l]上连续,在点x=0处可导,且f’(0)≠0.求证:给定的x∈(0,l),至少存在一个θ∈(0,1)使得
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.写出注水过程中t时刻
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
设f(u)为(一∞,+∞)上的连续函数,a为常数.则下述积分为x的偶函数的是()
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为y,求薄板受的液体压力.
设,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分
随机试题
上消化道出血的常见原因有哪些?并写出抢救措施。
A贫血B出血C发热D脾大E淋巴结肿大常为急性白血病患者的首发症状是
城市机场的选址应()为宜。
甲企业(增值税一般纳税人)为白酒生产企业,2016年4月发生以下业务:(1)向某烟酒专卖店销售粮食白酒20吨,开具普通发票,取得含税收入2000000元,另收取品牌使用费500000元。(2)提供100000元(不含税)的原材料委托乙企业加工散装药酒1
QC小组组长要()。
处于后习俗水平的两个阶段是()。
CSMA/CD是在ⅢEE802.3中制定的访问控制方式,其中的CSMA指的是(43),CD指的是(44),当侦听到冲突时,采用(45)继续侦听,发现冲突后采用的退避算法是(46)。
不能实现函数之间数据传递的是()。
Totalresearchanddevelopmentexpenditurefortheareaofwaste_______hassteadilyincreasedforthepast3years.
Heorderedthatallthebooks(send)______atonce.
最新回复
(
0
)