首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均为n阶方阵,A有n个互异特征值,且AB=BA.证明:B能相似于对角矩阵.
设A,B均为n阶方阵,A有n个互异特征值,且AB=BA.证明:B能相似于对角矩阵.
admin
2020-03-16
45
问题
设A,B均为n阶方阵,A有n个互异特征值,且AB=BA.证明:B能相似于对角矩阵.
选项
答案
因A有n个互异特征值,所以存在可逆矩阵P,使[*]其中λ
1
,λ
2
,…,λ
n
是A的特征值,且λ
i
≠λ
j
(i≠j).于是,根据题设AB=BA,得(P
一1
AP)(P
一1
BP)=P
一1
ABP=P
一1
BAP=(P
一1
BP)(P
一1
AP),即A(P
一1
BP)=(P
一1
BP)A. 令P
一1
BP=(c
ij
)
n×n
,代入上式,有[*]比较两边元素得λ
i
c
ij
=λ
j
c
ij
,即(λ
i
—λ
j
)c
ij
=0. 由此有c
ij
=0(i≠j),故[*]
解析
本题考查矩阵相似对角化的条件.
转载请注明原文地址:https://kaotiyun.com/show/sb84777K
0
考研数学二
相关试题推荐
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
求极限
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设f(χ)=χ2sinχ,求f(n)(0).
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
设χ=χ(t)由sint-∫tχ(t)φ(u)du=0确定,φ(0)=φ′(0)=1且φ(u)>0为可导函数,求χ〞(0).
设z=其中f,g均可微,求
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
曲线L:的斜渐近线为____.
随机试题
旋后肌综合征患者被卡压的神经是
为细胞生命活动提供能量,被称为细胞内“能量工厂”的细胞器是()。
A.春B.夏C.长夏D.秋E.冬属于“水”的季节是
患者,男,50岁。1年来头晕、乏力,半月来加重伴心悸、纳差、恶心,血压增高为165/105mmHg,化验尿蛋白(++),沉渣RBC4~8/HP,血HB80g/L,血肌酐610μmol/L,BUN25mmol/L。该患者最不可能出现的电
某市和平区卫生局根据省卫生厅“于必要时,各级卫生主管部门可将自己的部分职权授予法人或其他社会组织行使”的文件精神,遂授权该区内红旗商场可以对在其商场内吐痰的行为处以罚款。顾客林某因吐痰被罚款对此不服欲提起诉讼,则应以谁为被告?()
项目监理机构的监理文件档案换发新版时,应由( )负责将原版本收回作废。
某股份有限公司已发行的股份总额为30000股,近些年经营良好,为鼓舞职工的工作热情,拟收购本公司的股份用于奖励优秀职工,以下是几个律师的意见,正确的是()。
股份公司中有大股东小股东,时常出现的情况是大股东担当起搜集信息、监督经理的责任,而小股东往往搭大股东的便车,这种情况可以用博弈理论中的()来解释。
评估()的重要途径是了解受训者对培训项目的反应。
公安工作的对象决定了公安工作具有打击与保护的双重特点。()
最新回复
(
0
)