首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
设f(x)=在x=0处二阶导数存在,则常数a,b分别是
admin
2019-06-29
38
问题
设f(x)=
在x=0处二阶导数存在,则常数a,b分别是
选项
A、a=1,b=1
B、a=1,b=
C、a=1,b=2
D、a=2,b=1
答案
B
解析
显然有
f(x)=
即f(x)在x=0处连续,先求出
f
-
′(0)=(x
2
+ax+1)′|
x=0
=a,
f
+
′(0)=(e
x
+bsinx
2
)′|
x=0
=(e
x
+2bxcosx
2
)|
x=0
=1.
要求f′(0)
f
+
′(0)=f
-
′(0)即a=1.此时
f
-
″(0)=(2x+1)′|
x=0
=2,
f
+
″(0)=(e
x
+2bxcosx
2
)′|
x=0
=(e
x
+2bcosx
2
—4bx
2
sinx
2
)|
x=0
=1+2b.
要求f″(0)
f
-
″(0)=f
+
″(0)即2=1+2b,b=
.
因此选B.
分析2:我们考虑分段函数
f(X)=
其中f
1
(x)和f
2
(x)均在x=x
0
邻域k阶可导,则f(x)在分界点x=x
0
有k阶导数的充要条件是f
1
(x)和f
2
(x)在x=x
0
处有相同的k阶泰勒公式:
f
1
(x)=f
2
(x)
=a
0
+a
1
(x—x
0
)+a
2
(x—x
0
)
2
+…+a
k
(x—x
0
)
k
+o((x—x
0
)
k
)(x→x
0
)
把这一结论用于本题:取x
0
=0.
f
1
(x)=1+ax+x
2
f
2
(x)=e
x
+bsinx
2
=1+x+
x
2
+o(x
2
)+b(x
2
+o(x
2
))
=1+x+(b+
)x
2
+o(x
2
).
因此f(x)在x=0处二阶可导
a=1,b+
=1,即a=1,b=
.
故应选B.
转载请注明原文地址:https://kaotiyun.com/show/ssN4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3。求二次型f的矩阵的所有特征值;
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。证明α1,α2,α3线性无关;
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
设三阶矩阵A的特征值为2,3,λ。若行列式|2A|=一48,则λ=________。
求极限(sint/sinx)x/(sint-sinx),记此极限为f(x),求函数f(x)的间断点并指出其类型。
求函数f(x)=(1+x在区间(0,2π)内的间断点,并判断其类型。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
求微分方程xy"+2y’=ex的通解.
设(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
随机试题
20世纪50年代,毛泽东指出,中国工业化道路中最重要的问题是()
下列属于Calot三角边界的是
患者男,40岁。因右侧胫骨平台骨折手术切开复位,螺钉内固定术,功能位石膏外固定4周后,拆除石膏后,发现右膝僵硬,要求康复治疗。导致膝关节屈曲受限的原因中,描述错误的是
患儿,1岁,能抬头,不能独坐及站立,牙齿萌出4颗,头颅呈方形,卤门宽大,发稀而黄,目无神采,反应迟钝,夜卧不安,易倦懒动,肢体无力,睡眠不实,面色不华,形体瘦弱,舌淡苔少,指纹淡。治疗应首选
小区王某等住户因车位问题与该小区的开发商B公司发生争议。B公司与王某等住户的购房合同规定:B公司将为本楼住户提供地下停车场的停车车位。但王某等住户搬进小区后,发现B公司已将该楼50多套房连同地下停车场卖给了C公司。C公司明确表示,地下停车场的车位仅供本楼本
MRP系统最主要的目标是确定()的需求量。
生活也许______不了苦难,却从来不会拒绝一朵萝卜花的盛开。在女人一朵一朵细细的______里,有对生活的尊重,还有一种信念,那就是:美好,就在不远处,就在手底下。填入横线部分最恰当的一项是()。
网页的强大之处在于(),它能将Intemet中的信息有机地组织起来,使我们可以进行选择性浏览。
阅读以下说明,回答问题1~问题3,将解答填入对应的答案栏内。【说明】随着网络应用的日益广泛,接入网络和边缘网络的需求也更加复杂多样,企业为了开展电子商务,必须实现与Internet的互联,路由器是实现这一互联的关键设备,路由器可以为企业
以下哪一项不属于软件易用性测试关注的范畴?______。
最新回复
(
0
)